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Abstract: This paper evaluates performance characteristics of the HP AlphaServer GS1280 shared-memory 
multiprocessor system. The GS1280 system contains up to 64 Alpha 21364 (EV7) CPUs connected together 
via a torus-based interconnect. We describe architectural features of the GS1280 system. We compare and 
contrast the GS1280 to the previous-generation Alpha systems (AlphaServer GS320 and ES45/SC45), as 
well as other-vendor systems (IBM, SUN, SGI).  We characterize GS1280 performance using synthetic 
workloads that stress various system components (processor, memory, Interprocessor (IP) links, and I/O. 
We then expand the analysis to the real workloads, including standard benchmarks, ISV/HPTC and 
commercial applications, and customer benchmarks. We characterize these applications using built-in 
performance counter tools (Xmesh). Based on the data, we provide guidelines (software and 
hardware/configuration) for improving GS1280 performance.  

  
1. INTRODUCTION 
The HP AlphaServer GS1280 (codename Marvel) is a shared memory multiprocessor system containing up 
to 64 fourth-generation Alpha 21364 (EV7) microprocessors [1]. 

 
The GS1280 system contains many architectural advances – both in the microprocessor and in the 
surrounding memory system - that contribute to its performance. The EV7 processor [1][16] uses the same 
core as the previous-generation 21264 (EV6) processor. However, EV7 includes three additional 
components: (1) an on-chip L2 cache, (2) two on-chip Direct Rambus (RDRAM) memory controllers and (3) 
an router. The combination of these components helped achieve improved access time to the L2 cache, low 
memory latency (local and remote), exceptional memory bandwidth, and very high interconnect bandwidth. 
These improvements enhance single-CPU performance and contribute to excellent SMP scaling. We 
describe and analyze these architectural advances and present key results and profiling data to clarify the 
benefits of these design features. We contrast GS1280 to two previous-generation Alpha systems, both 
based on the 21264 (EV6) processor: GS320 – a 32-CPU SMP NUMA system with switch-based 
interconnect [2], and SC45 – 4-CPU ES45 systems connected in a cluster configuration via a fast Quadrics 
switch. [4][5][6][7].  
 
We include results from kernels that exercise the memory subsystem [9][10]. We compare GS1280 to the 
previous-generation Alpha and other-vendor platforms in standard benchmarks (SPEC2000, 
SPEComp2001, Linpack NXN, STREAMS, Transaction-Processing, Java Business application, etc. [8][10]). 
We further expand the analysis to other large ISV/HPTC applications (Structural Modeling, CFD, Crash 
simulation, Material/Life Sciences) [13][18]-[27]. We identify applications that show significant advantage on 
GS1280 vs. other systems (“killer” applications). We demonstrate how to use tools based on the EV7 and 
IO7 specific performance counters (Xmesh, Profileme [11][3]) to characterize applications and predict their 
performance on GS1280. We describe Xmesh, a graphical tool that provides a run-time display of utilization 
of CPUs, memory controllers, inter-processor (IP) links, and I/O ports. We provide guidelines on how to 
optimize application performance using software techniques. Finally, we discuss how to configure GS1280 
for best performance. Note that very little GS1280 performance data is published at this time. We will keep 
this information updated as published data becomes available. 
 
The remainder of this paper is organized as follows: Section 2 describes the architecture of the GS1280 
system. Section 3 characterizes the memory, interconnect, and I/O system improvements. Section 4 
compares application performance of GS1280 to the other systems (for standard benchmarks, ISV/HPTC 
applications, and customer benchmarks). In this section we also identify applications that perform 
exceptionally well on GS1280 (“killer apps”). Section 5 describes tools for analyzing GS1280 performance 
(Xmesh). Section 6 discusses methods for improving GS1280 performance. Section 7 concludes. 
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2. GS1280 SYSTEM OVERVIEW 
The Alpha 21364 (EV7) microprocessor [1] shown in Figures 1, 1a, and 1b integrates the following 
components on a single chip: (1) second-level (L2) cache, (2) router, and (3) two memory controllers 
(Zboxes), and (4) a 21264 (EV68) microprocessor core. The current GS1280 product goal for the processor 
frequency is 1.15 GHz. The memory controllers and inter-processor links operate at 767 MHz (data rate). 
The L2 cache is 1.75 MB in size, 7-way set-associative. The load-to-use L2 cache latency is 12 cycles (10.4 
ns). The data path to the cache is 16-bytes wide, resulting in peak bandwidth of 18.4 GB/s. There are 16 
Victim buffers from L1 to L2 and from L2 to memory.  
 
The two integrated memory controllers (Zboxes) connect the processor directly to the RDRAM memory 
(Figure 1a). The peak memory bandwidth is 12.3 GB/s (8 channels, 2 bytes each).  There can be up to 2048 
pages open simultaneously. The optional 5th channel is provided as a redundant channel. The four 
interprocessor links are capable of 6.2 GB/s each (2 unidirectional links with 3.1 GB/s each). The IO7 is 
connected to the EV7 via a full-duplex link capable of 3.1 GB/s. Each IO7 supports one AGP, one PCI, and 
two PCI-X ports. The dual CPU building block consists of 2 EV7 processors, memory cards, power 
regulators and a CPU management card (Figure 1b). 

 
 
   Figure 1. EV7 (21364) block diagram.                      Figure 1a. EV7 interface to memory and I/O.    

 Figure 1b. Dual CPU building block.         
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The router [16] connects multiple 21364s in a two-dimensional, adaptive, torus network. Examples of the 
interconnect for 16 and 32 CPU GS1280 are shown in Figures 2a and 2b. The actual cable connections are 
shown on the left hand side of each figure.  
 

Figure 2a. 16-CPU Interconnect.                       Figure 2b. 32-CPU Interconnect. 
 
 
The router connects to 4 links that connect to 4 neighbors in the torus: North, South, East, and West (2 uni-
directional links each). Each router routes packets arriving from several input ports (L2 cache, ZBoxes, I/O, 
and other routers) to several output ports. (i.e., L2 cache, ZBoxes, I/O, and other routers).  To avoid 
deadlocks in the coherence protocol and the network, the router multiplexes a physical link among several 
virtual channels. Each input port has two first-level arbiters, called the local arbiters, each of which selects a 
candidate packet among those waiting at the input port.  Each output port has a second-level arbiter, called 
the global arbiter, which selects a packet from those nominated for it by the local arbiters. 

 
The global directory protocol is a forwarding protocol [16]. There are 3 types of messages: Requests, 
Forwards, and Responses. A requesting processor sends a Request message to the directory. If the block is 
local, the directory is updated and a Response is sent back. If the block is in Exclusive state, the Forward 
message is sent to the owner of the block, who sends the Response to the requestor and directory. If the 
block is in the Shared state (and the request is to modify the block), Forward/invalidates are sent to each of 
the shared copies, and a Response is sent to the requestor.  
 
To optimize network buffer and link utilization, the 21364 routing protocol uses minimal adaptive routing 
scheme. Only a path with minimum number of hops from source to destination is used.  However, a message 
can choose the less congested minimal path (adaptive protocol). Both the coherence and adaptive routing 
protocols can introduce deadlocks in the 21364 network.  The coherence protocol can introduce deadlocks 
due to cyclic dependence between different packet classes.  For example, the Request packets can fill up the 
network and prevent the Response packets from ever reaching their destinations. The 21364 breaks this 
cyclic dependence by creating virtual channels for each class of coherence packets and prioritizing the 
dependence among these classes. By creating separate virtual channels for each class of packets, the router 
guarantees that each class of packets can be drained independent of other classes.  Thus, a response packet 
can never block behind a request packet.   The dependence ordering is as follows: Read I/O, Write I/O, 
Requests, Forwards, Invalidation Broadcast, Acknowledgments, and Block Responses.  Thus, a Request can 
generate a Block Response, but a Block Response cannot generate a Request. 
 
Adaptive routing can generate two types of deadlocks: intra-dimensional (because the network is a torus, not 
a mesh) and inter-dimensional (arises in any square portion of the mesh). The intra-dimensional deadlock is 
solved with virtual channels: VC0 and VC1. The inter-dimensional deadlocks are resolved by allowing 
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messages to route in one dimension (e.g. East-West) before routing in the next dimension (e.g. North-South) 
[12]. Additionally, to facilitate adaptive routing, the 21364 provides a separate virtual channel called the 
Adaptive channel for each class.  Any message (other than I/O packets) can route through the Adaptive 
channel.  However, if the Adaptive channels fill up, packets can enter the deadlock-free channels. 
 
The previous-generation AlphaServer GS320 system uses a switch to connect four processors to the four 
memory modules in a single Quad Building Block (QBB) and then a hierarchical switch to connect QBBs into 
the larger-scale multiprocessor system (up to 32 CPUs) [2]. The design and characterization of the ES45 
system are described in [4].  

 
3. Memory, Interconnect, and I/O Subsystem 
In this section we characterize memory, interprocessor, and I/O subsystems of GS1280 and compare them to 
the previous-generation Alpha platforms.   

 
3.1 Memory Latency for dependent loads 
The 21364 processor provides two RDRAM memory controllers with 12.3 GB/s peak memory bandwidth. 
Each processor can be configured with 0, 1, or 2 memory controllers. The L2 1.75MB on-chip cache is 7-way 
set associative.  The L2 cache on the previous-generation AlphaServers (ES45 and GS320) is 16MB, off-
chip, direct-mapped. 
 
Figure 3 shows “dependent-load” latency. The “dependent-load latency” [11] measures load-to-use latency 
where each load depends on the result from the previous load. The lower axis in Figure 3 varies the 
referenced data size to fit in different levels of the memory system hierarchy. Data is accessed in a stride of 
64 bytes (cache block). The results in Figure 3 show that GS1280 has 3.8 times lower “dependent-load” 
memory latency (32M size) vs. the previous-generation GS320.This data indicates that large-size applications 
which are not blocked to take advantage of large 16MB cache will run substantially faster on GS1280 than on 
the 21264-based platforms. For data range between 1.75MB and 16MB, the latency is higher on GS1280 
than on GS320 and ES45, since the block is fetched from memory on GS1280 vs. from the 16MB L2 cache 
on GS320/ES45. This indicates that application sizes that fall in this range are likely to run slower on GS1280 
than on the previous-generation platforms. For data range between 64KB and 1.75MB, latency is again much 
lower on GS1280 than GS320/ES45. That’s because the L2 cache in GS1280 is on-chip, thus providing much 
lower access time than the off-chip caches in GS320/ES45. Figure 3 shows that GS1280 provides the lowest 
memory latency of all systems compared (more than 3 times lower than IBM/Power4). Figure 4 shows 
dependent load latency on GS1280 as both dataset size and stride increase. This data indicates that the 
latency increases from ~80ns for open-page access to ~130ns for closed-page access (larger-stride access).  

      Figure 3. Dependent load latency comparison.                  Figure 4. Dependent load latency on GS1280 for various strides.
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3.2 Memory Bandwidth 
 
The STREAM benchmark [10] measures sustainable memory bandwidth in megabytes per second (MB/s) 
across four vector kernels: Copy, Scale, Sum, and SAXPY (Triad) [10]. We show only the results for the 
Triad kernel (the other kernels have similar results). Figure 5 compares memory bandwidth of the STREAM 
Triad loop across Alpha servers as well as other leading-vendor systems [10]. This data shows that the 
memory bandwidth on GS1280 is substantially (7 times) higher than the previous-generation GS320. In 
addition, GS1280 shows substantial advantage in memory bandwidth over all other systems shown (5 times 
advantage over IBM/Power4).  
 
Figure 6 shows that GS1280 exhibits not only 1-CPU advantage in memory bandwidth (due to high-
bandwidth RDRAM memory provided by the EV7 processor), it also provides linear scaling in bandwidth as 
the number of CPUs increases. The reason is because each CPU in GS1280 system has its own local 
memory, thus avoiding contention for memory between jobs that run simultaneously on several CPUs. This 
is not the case on ES45, where 4 CPUs contend for the same memory, and GS320 where all 4 CPUs within 
the same QBB share the same memory. Therefore, bandwidth improvement from 1 to 4 CPUs on 
ES45/GS320 is less-than-linear (as indicated in Figure 6). Note that bandwidth scaling on IBM/Power4 is 
less-than-linear as well (Figure 5).  
 
The data in Figures 5 and 6 indicate that the applications that stress memory bandwidth will run 
exceptionally well on GS1280. The advantage is likely to increase as the number of CPUs grows. 
 

Figure 5. McCalpin STREAM bandwidth comparison. Figure 6. STREAM bandwidth for 1-4 CPUs. 
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3.3 1-CPU performance: SPEC2000 
 
Figures 7 and 8 compare Instructions-per-Cycle (IPC) for floating-point (fp) and integer CPU2000 benchmarks 
on GS1280 vs. GS320 and ES45. Note that IPC is proportional to performance, except that clock differences 
are eliminated. IPC-based comparisons are done in most architectural studies to isolate the performance 
effects of architecture design.  
 
On average, GS1280 shows advantage over both GS320 and ES45 in SPECfp2000, and comparable 
performance in SPECint2000. This is because integer benchmarks fit well in the on-chip caches, while several 
fp benchmarks stress memory bandwidth (Figures 7 and 8). GS1280 has significant advantage in memory 
bandwidth (as illustrated in Figure 6). The IPC in integer benchmarks is comparable on all 3 systems (primarily 
determined by the clock speed). 
 
Note that some benchmarks demonstrate a substantial advantage on GS1280 over ES45/GS320 (e.g. swim: 
2.3 times vs. ES45 and 4 times vs. GS320). However, many others show comparable performance (most 
integer benchmarks). Yet, there are cases where GS320 and ES45 outperform GS1280 (e.g. facerec). In order 
to better understand what causes such differences, we generated profiles that show memory controller 
utilization for all benchmarks (Figures 9 and 10). 
  

Figure 7. IPC for SPECfp2000.     Figure 8. IPC for SPECint2000. 
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Figures 9 and 10 illustrate memory controller utilization profiling histograms for SPEC2000 benchmarks on 
GS1280. The profiles are collected using the Xmesh tool that is based on the EV7 built-in performance counters 
(detailed description of Xmesh provided in Section 5). The histograms are shown as a function of elapsed time 
for the entire benchmark run.  
 
This data indicates that the benchmarks with high memory utilization are the same benchmarks that show 
significant advantage on GS1280. Swim is the leader with 55% utilization, followed by applu, lucas, equake, and 
mgrid (20-30%), fma3d, art, wupwise, and galgel (10-20%). Interestingly, facerec has 8% utilization: still 
GS1280 has lower IPC than the other systems. That is due to the smaller cache size on GS1280 (1.75MB vs. 
16MB on GS320/ES45). The simulation results show that facerec dataset fits in the 8MB cache, but not in the 
1.75MB cache. Therefore, it has to access memory on GS1280, whereas it fetches data mostly from the 16MB 
cache on GS320 and ES45. Figure 3 illustrates that the cache access on GS320 is faster than the memory 
access on GS1280. Similarly, mcf has high memory utilization, however it does not show advantage on 
GS1280. That’s because cache misses on mcf are significantly lower with the 16MB cache than with the 
1.75MB cache.  

 
 

 
Figure 9. GS1280 memory controller utilization in SPECfp2000.             Figure 10. GS1280 memory controller utilization in SPECint2000. 
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3.4. Remote memory latency 
 
In Sections 3.1 and 3.2 we contrasted local memory latencies and bandwidths on GS1280 with previous-
generation Alpha platforms. Local memory characteristics are important for the single-CPU workloads and 
multiprocessor workloads that fit well in local memory. However, in order to characterize applications that do not 
fit well in local memory, we need to understand how local latency compares to the remote latency. Figure 11 
compares local and remote memory latency on GS320 and GS1280 for 16 CPUs. Latency is measured from 
CPU0 to all other CPUs in a 16-CPU system.  
 
Figure 11 indicates that GS320 has 2 levels of latency: local (within a set of 4 CPUs called QBB) and remote 
(outside the QBB). The GS1280 system has many levels of remote latency, depending on how many hops need 
to be traveled from source to destination. Note that GS1280 shows substantial improvement in not only local, but 
also remote memory latency. The average remote latency is on GS1280 is 4 times lower than on GS320 (with 16 
CPUs). The worst-case memory latency on 16-CPU GS1280 (4-hop latency from node 0 to 12) is lower that the 
local memory latency on GS320. 
 
Figure 12 shows local and remote Read Dirty latency. In this case, a cache block is read from another 
processor’s cache (instead of memory), since it was written by another processor (thus Dirty). The latency data 
indicates that GS1280 shows even higher advantage over the other platforms in dirty (Figure 12) than clean 
(Figure 11) latency. The advantage is increased from 4 times (Figure 11) to 6.6 times (Figure 12). The average 
16-CPU dirty latency on GS1280 is lower than the average 4-CPU dirty latency on ES45 (Figure 12). In fact, 
GS1280 is the first Alpha system where dirty latency is comparable (or lower) than the clean latency. This 
feature is very important in applications that require a lot of data sharing (many commercial and 
parallel/multithreaded applications belong to this class). 
 
 

 
 Figure 11. Local/remote clean memory latency on 16 CPUs.    Figure 12. Local/remote dirty memory latency on 16 CPUs. 
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Figure 13 illustrates measured latency from node 0 to all other nodes in the 16-CPU GS1280 system (each 
square is a CPU within a 4x4 torus). The local memory latency of 82ns is increased to 133-150ns for the 1-hop 
neighbors (4 of them). Note that the 1-hop latency is the lowest for the neighbors on the same module (133ns), 
and the highest for the neighbors that are connected via a cable (150ns). The 2-hop latency is between 169 and 
192ns (6 nodes are 2-hop away). The 3-hop latency is between 215ns and 228ns (4 nodes). The 4-hop latency 
(worst-case for 16 CPUs) is 250 ns (1 node is 4-hops away). 
 
The average latencies measured for different numbers of CPUs are compared in Figure 14. This figure 
illustrates that GS1280 has a significant advantage over GS320 not only in local, but also in average remote 
memory latency.  The advantage is 2 times on a 4-CPU system and closer to 4 times on a 32-CPU system, as 
indicated in Figure 14. Even the 64-CPU GS1280 system has close to 3 times lower average remote latency 
than the 32-CPU GS320. The 4-CPU GS1280 shows comparable average memory latency to ES45. 
 
The GS1280 advantage in remote memory latency indicates that applications which are not structured to fit well 
within a processor’s local memory will run much more efficiently on GS1280 than on GS320.  
 
 

Figure 13. Memory latencies (ns) on GS1280                     Figure 14. Average load-to-use latency comparison. 
(each square represents a CPU in a 16-CPU torus). 
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3.5 Interprocessor Bandwidth 
 

The memory latency in Figure 14 is measured on an idle system with only 2 CPUs active (the reader CPU 
sends a Read Request to another CPU that provides a block by sending a Block Response). In this section, 
we evaluate performance of the loaded system. This is needed in order to characterize applications that 
require all CPUs to exchange messages simultaneously (more closely related to the real application 
environment).  
 
Figure 15 compares bandwidth under load on GS1280 to ES45/GS320. Each CPU randomly selects 
another CPU to send a Read request to. The test is started with a single outstanding load (leftmost point on 
the graph). For each additional point, one outstanding request is added (up to 20 outstanding requests). In 
ideal case, as the number of outstanding requests increases, the bandwidth will increase too (moving to the 
right), and latency will not change (line stays low and flat). Figure 14 shows that GS1280 has substantial 
performance advantage over the other systems as the system load is increased. Although there is an 
increase in latency on GS1280, it is not nearly as high as in previous-generation platforms (ES45 and 
GS320). This indicates that GS1280 is much more resilient to the load (bandwidth increases at much 
smaller latency increase). This is an important system feature for applications that require substantial inter-
processor (IP) bandwidth (e.g. simultaneous processes that access memory randomly). The GS1280 is 
much better suited for applications that are not structured well for NUMA architectures (poor data locality). 

 
Figure 16 compares GS1280 to SC45 and GS320 (16 CPUs) using the Pallas Exchange test. The Pallas 
set of benchmarks [22] is used to evaluate MPI performance (which is important in many MPI applications). 
The set of tests includes Single-transfer tests (PingPong), Parallel-transfer tests (Exchange), and Collective 
tests (Reduce, Alltoall). The comparison in Figure 16 indicates substantial (3-4 times) bandwidth advantage 
of GS1280 vs. GS320 and ES45 in the Exchange test (for larger buffer sizes). Note that the advantage vs. 
SC45 comes mainly from the faster inter-processor interconnect on GS1280 vs. the Quadrics switch on 
SC45. This indicates that up-to 64 CPUs, GS1280 takes advantage of the faster interconnect and will 
outperform 64-CPU SC45. However, for larger-than 64-CPU configurations, SC1280 will start to be affected 
by the lower bandwidth on Quadrics interconnect. 
  

Figure 15. Loaded-system performance comparison.         Figure 16. Pallas Exchange comparison. 
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 3.6. GS1280 IO performance and scaling 
The IO7 chip connects to the EV7 processor via two unidirectional data paths delivering aggregate bandwidth 
of 3.1 GB/s. In addition to Standard configuration (Figure 17), the high-performance (Figure 18) configuration 
is provided. The standard configuration provides ports to 3 PCI/PCI-X busses and one AGP bus.  

Figure 17. Standard I/O drawer configuration.                       Figure 18. X-Shelf I/O drawer. 
 
Each EV7 within the GS1280 system can be configured with its own IO7 (for highest bandwidth). The 
measured I/O bandwidth for this configuration with up to 8 CPUs is shown in Figure 19. The I/O bandwidth is 
measured as “raw device” (no file system): note that real applications that use a file system will experience 
lower I/O bandwidth. Large (128 KB) transfers are used. Each I/O is configured with enough disks and 
controllers such that it reaches a saturation point (around 1 GB/s). This data indicates that GS1280 achieves 
linear scaling in I/O bandwidth, delivering 8 GB/s I/O Read bandwidth across 8 CPUs and 8 IOs. This is a 
substantially higher I/O bandwidth than the previous-generation Alpha platforms (2.7 times vs. ES45 and 8 
times v. GS320). Note that GS1280 advantage comes for the ability to configure each CPU with I/O (while in 
ES45 and GS320, an I/O is shared by 4 CPUs). This data can be used to extrapolate GS1280 I/O bandwidth 
for other I/O configurations (e.g. one IO per two or four CPUs). 

Figure 19. Delivered I/O bandwidth (raw device). 
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4. Application performance 
In the previous section, we discussed GS1280 architectural improvements and performance of various 
system components (processor, memory, I/O). In this section, we analyze how GS1280 compares to the 
previous-generation Alpha servers, as well as other-vendor systems over a variety of technical/commercial 
standard benchmarks (Section 4.1) and HPTC/ISV applications (Section 4.2). In several cases, we include 
results from our profiling analysis to explain why some applications show different behavior on GS1280. 
Section 4.2 includes several applications that perform exceptionally well on GS1280 (“killer” applications). We 
again use profiling analysis to highlight application characteristics that result in outstanding performance on 
GS1280. 
 
4.1 Standard benchmarks 
The standard benchmarks discussed here include the following classes of benchmarks: 
•  Benchmarks important in HPTC: SPEC2000 (1 CPU and multiprocessor rates), SPEComp2001 
(parallel/decomposed SPEC benchmarks), Linpack NxN (solver). Note that STREAM results (also important 
in HPTC) are discussed in Section 3.2. 
•  Commercial benchmarks: Transaction Processing, SPECjbb2000, and Decision Support. 

 
 
4.1.1 CPU2000 
Figure 20 shows GS1280 competitive comparison in CPU2000 as of January 10, 2003 [8]. The CPU2000 
results on GS1280 will be published in late January 2003. Note that these are 1-CPU workloads and are 
mainly indicative of processor and memory subsystem performance, as well as compiler optimizations. Only 
“peak” results are included (where all compiler optimizations are allowed). This data indicates that GS1280 
(and EV7 processor) show advantage in SPECfp2000, which is mainly due to EV7’s advantage in memory 
bandwidth (see STREAM results in Section 3.2). The EV7 processor does not show advantage in 
SPECint2000, since these benchmarks do not stress memory bandwidth and are highly dependent on CPU 
clock speed. That is the main reason for Pentium4 advantage in SPECint2000, since it is running at close to 
2x the frequency of all other CPUs (2.8GHz). On the other hand, EV7 is 1.7 times faster than Pentium4 in 
SPECfp2000, since these benchmarks put more stress on memory bandwidth (Figure 9). Note that Itanium2 
shows excellent performance, indicating that Alpha customers migrating to IPF can expect very good 
performance in the follow-on future systems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20. CPU2000 comparison.
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4.1.2 CPU2000 Rates 
 
The SPEC2000 rates are a measure of throughput (independent jobs running simultaneously) [8]. Several 
SPECfp2000 benchmarks stress memory bandwidth, and thus do not scale linearly on all platforms. 
However, such benchmarks show linear scaling on GS1280 (Figure 21). The reason is in the GS1280 
NUMA architecture design, where each processor has its own local memory, thus avoiding contention for 
memory among simultaneous processes.  
 
The GS1280 server shows substantial competitive advantage in SPECfp2000 rates: 2 times advantage 
vs. IBM/Power4 (32 CPUs). Note that GS1280 shows much lower advantage (1.2x) on 1 CPU. This 
indicates that memory-bandwidth intensive throughput applications will scale much better on GS1280 
than on IBM/Power4. The GS1280 server also shows substantial (1.7 times) improvement vs. the 
previous-generation AlphaServer GS320 in SPECfp_rate2000. The GS1280 architecture is a perfect fit 
for this type of application: memory-bandwidth intensive jobs running simultaneously. Note that GS1280 
shows much lower advantage in SPECint2000 rates (Figure 22). This is because these workloads do not 
stress memory bandwidth, and therefore show close-to-linear scaling on all platforms.  

 
 Figure 21. SPECfp_rate2000 comparison.                       Figure 22. SPECint_rate2000 comparison. 
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4.1.3 SPEComp2001 
 
SPEComp2001 are OpenMP multi-threaded workloads, decomposed to run on a shared-memory 
multiprocessor [8]. As opposed to the SPEC2000 rates (Section 4.1.2), these workloads stress not only a 
single-CPU, but put heavy demand on the inter-processor interconnect (since multiple threads access 
data through shared memory). This class of workloads is representative of scientific and engineering 
applications (important in HPTC). Eleven different application benchmarks - covering everything from 
computational chemistry to finite-element crash simulation to shallow water modeling - are included in the 
benchmark suite. 
 
The results for OMPM2001 are compared in Figure 23. This data shows that GS1280 has significant 
performance advantage over other comparable systems. GS1280 shows 20% advantage vs. 
IBM/Power4+/1.45GHz. In addition, GS1280 shows very good scaling, with a 16-CPU result matching the 
64-CPU SGI result, and outperforming SUN 16-CPU result by almost a factor of 3 times. GS1280 also 
shows substantial advantage vs. the previous-generation Alpha platforms such as GS320 and ES45. 
 
The superior Marvel performance in these workloads is due to excellent hardware (as indicated in Figure 
15) and software support for NUMA. 

 
 

 
 

 
Figure 23. SPEComp2001 (OMPM2001) comparison. 
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4.1.4 Linpack NxN 
 
Linpack NxN is a solver of a dense system of linear equations [28]. The benchmark is fairly popular in 
HPTC; it is used as a metric for Top500 rating of supercomputer systems. The NxN version allows 
users to scale the size of the problem and to optimize the software to achieve the best performance 
on a given system. The benchmark is usually blocked to fit well in the on-chip caches, thus not 
stressing memory bandwidth. The performance of this benchmark is determined mainly by the CPU 
clock speed, effectiveness of the math library functions (BLAS), and the number of floating-point 
units. 
 
All Alpha platforms show disadvantage in the benchmark (Figure 24). The reason is in the lower 
number of floating-point units in Alpha vs. most other processors (one Multiply and one Add 
instruction in Alpha vs. 2 MUL/ADD instructions in other processors).  Therefore, this Alpha 
disadvantage will show in most applications that run close to peak FLOPS performance. In our 
experience and from profiling data based on real customer benchmarks, we find that most real 
applications rarely run at the peak FLOPS performance. In most cases, large applications cannot be 
easily blocked to fit in the on-chip caches, and their performance is limited by the memory subsystem.  
 
Although GS1280 shows performance disadvantage in this benchmark, the results show very good 
(linear) scaling to large number of CPUs. In addition, GS1280 shows higher percentage of the peak 
performance than most other platforms (85% of the peak vs. 57% in IBM/Power4). 
 

 
Figure 24. Linpack NxN comparison. 
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4.2 ISV/HPTC Applications 

 
The following ISV/HPTC applications are discussed in this section: 
• Structural modeling: NASTRAN, Abaqus, Marc 
• Computational Fluid Dynamics (CFD): Fluent, StarCD, PowerFLOW 
• Crash analysis: LS-Dyna 
• Material Sciences: Gaussian98, NWchem, Amber, MM5 (Weather prediction) 
• Life Sciences: Blast, Fasta, other 

 
4.2.1 NASTRAN 
NASTRAN is a popular Structural-modeling application [18]. It consists of 6 kernels used for car-body or 
engine modeling.  
 
The GS1280 results are shows in Figures 29-32. This data indicates that GS1280 shows advantage vs. 
IBM/Power4 in xlrs, lgqd and tdf. GS1280 shows much better scaling than IBM. GS1280 also shows 
significant advantage vs. the previous-generation Alpha platform GS320. In most cases, GS1280 
performance is comparable to ES45/1.25GHz (up to 4 CPUs). 

  

Figure 29. Nastran xlrc comparison.                              Figure 30. Nastran xlem comparison.  
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Figure 31. Nastran lgqd comparison.                                       Figure 32. Nastran tdf comparison 
4.2.2 Abaqus 
Abaqus is a Structural-analysis application [19]. Abaqus/Standard provides traditional finite element analysis 
(static, dynamics, thermal). Abaqus/Explicit is focused on transient dynamics and quasi-static analyses (drop 
test, crushing, and many manufacturing processes).  
 
As indicated in Figure 33, GS1280 shows 10-30% advantage vs. IBM/Power4 in Abaqus/Explicit. Note that 
version 6.2 is used for comparison. Since 6.2 submissions are no longer accepted, version 6.3 is likely to be 
published. The reason we used 6.2 here is that no published 6.3 competitive results were available at the time 
this paper is written.  

Figure 33. Abaqus Explicit comparison. 
 
 Figures 34 and 35 show linear scaling on GS1280 (no increase in execution time) in Abaqus/Throughput 
(multiple Abaqus jobs executed simultaneously).  The GS1280 shows performance advantage in Explicit vs. 
IBM/Power4, but no advantage in Standard (1-CPU). Note that IBM published only 1-CPU Standard 
performance.  The GS1280 shows linear scaling in Standard/Simultaneous, while the scaling on IBM is 
unknown. 

Figure 34. Abaqus Explicit/Simultaneous comparison.       Figure 35. Abaqus Standard/Simultaneous comparison.
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4.2.3 Marc 
 
Marc is a non-linear finite element solver that includes Engine, Thread Rolling, and Turbine Blade 
benchmarks [20]. 
 
The data shown in Figure 36 are for the Thread Rolling model (note: other results are comparable). The 
GS1280 shows advantage vs. the other Alpha platforms. It shows good scaling (note: application does not 
scale well beyond 8 CPUs). Note that there are no recent competitive results published for Marc (IBM in 
particular). 

 

 
 
Figure 36. Marc Thread Rolling comparison. 
 
 
 
 
 

Marc: Thread Rolling

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10
# CPUs

1/
Ti

m
e

HP GS1280/1.15GHz
HP GS320/1GHz
HP rx5670/1GHz
SGI O3K/600MHz
SUN Fire 6800/750MHz
HP Linux Pentium4/1.7GHz



 19

4.2.4 Fluent (CFD) 
 
Fluent is a commercial Computational Fluid Dynamics application [13]. For comparison, we selected a large 
case (l1) that models flow around a fighter aircraft. 
 
Figure 37 compares GS1280 performance to the previous-generation Alpha platforms and other-vendor 
published results. This data indicates that GS1280 shows comparable performance to the SC45. Examining 
Figures 38 and 39 with measured utilization shows that the reason is that this benchmark does not put 
significant stress on either memory controller or IP-links bandwidth (thus explaining comparable performance 
to SC45). GS1280 shows 20% advantage vs. IBM/Power4 and substantial (2-3 times) advantage vs. SUN. 
GS1280 also shows substantial (1.5 times) advantage vs. previous-generation Alpha platform (GS320). 

                                               
 Figure 37. Fluent fl5l1 performance comparison.          
 

 
Figure 38. Memory Controller utilization in Fluent. Figure 39. IP links utilization in Fluent. 
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4.2.5 PowerFLOW 
PowerFLOW is another CFD application [22]. The benchmark shown here is the external airflow around a car. 
 
GS1280 shows significant performance advantage and much better scaling than IBM (20% with 16 CPUs and 
50% with 32 CPUs). GS1280 shows comparable performance as ES45/1.25GHz (Figure 40). 
 
4.2.6 StarCD 
StarCD is another CFD application, modeling turbulent flow around the A-class car [23]. 
 
GS1280 shows significant performance advantage vs. the other Alpha platforms (Figure 41). This is mainly due to 
exceptional memory bandwidth on GS1280 (Figure 5). Our profiling data indicates that this application shows high 
memory bandwidth utilization (15-18% on average), and well as high IP-link utilization (~10%). This explains 
substantial advantage of GS1280 vs. GS320. Using more aggressive prefetching, we were able to improve 
performance of this workload by 20-30% on 16-32 CPU GS1280. 
 
GS1280 also shows advantage vs. IBM/Power4 (25% with 32 CPUs). The scaling is significantly better on 
GS1280 than on IBM. Itanium2 shows excellent performance in this application (Figure 41).  
 

Figure 40. PowerFLOW comparison.                                                   Figure 41. StarCD comparison. 
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4.2.8 Crash modeling: LS-Dyna 
LS-Dyna is a crash simulation application [24]. The results for the model of a Neon dataset with 535K 
elements are shown in Figures 42a (for SMP version) and 42b (for MPI version). The results from Figure 42 
show that GS1280 performs comparably to IBM (IBM results up to 2 CPUs based on internal HP 
measurements). Itanium2 shows very good performance in an SMP version. The MPI version shows GS1280 
advantage over other systems and linear scaling in performance as the number of CPUs is increased. 
 
The LS-Dyna Caravan results from Figure 43 show substantial performance advantage on GS1280 vs. 
GS320. The advantage is particularly pronounced for 8 CPUs. The profiling data indicate that lower remote 
latency (clean and dirty) is the key factor for GS1280 advantage. 

Figure 42a. Dyna Neon comparison (SMP).                       Figure 42b. Dyna Neon comparison (MPI).                             

Figure 43. Dyna Caravan comparison (SMP). 
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4.2.9 NWchem 
NWchem is a molecular dynamics modeling application [25]. Data from Figures 44 and 45 show GS1280 
advantage for more than 16 CPUs (thus GS1280 has better scaling than other platforms). GS1280 shows 
20-30% advantage vs. the previous-generation GS320 and 10-20% advantage vs. IBM/Power4. 

 

Figure 44. NWchem SiOSi3 comparison.                             Figure 45. NWchem SiOSi6 comparison. 
 
4.2.10 MM5: weather prediction 
MM5 is the Penn State NCAR Mesoscale Model5 weather prediction [26]. GS1280 shows much better scaling 
than IBM/Power4: 20% advantage with 16 CPUs and 40% advantage with 32 CPUs (Figure 46). 

Figure 46. MM5 weather prediction comparison. 
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4.2.11 Gaussian98 
Gaussian98 is a chemistry application. The Alpha Pinene input files are used for the comparison below 
(Figure 47). Data shows that GS1280 has substantially better scaling than GS320 (16 and 32 CPUs). GS1280 
also shows substantial performance advantage and much better scaling advantage than IBM/Power4. The 
ES45 and Itanium2 outperform GS1280 for 4 CPUs.  

 
Figure 47. Gaussian98 comparison. 

 
4.2.12 Amber 
Amber is another chemistry application [27]. GS1280 shows good scaling and comparable performance as 
ES45 up to 4 CPUs (Figures 48 and 49). GS1280 scales much better than GS320 (substantially better 
performance on 32 CPUs).  

 

Figure 48. Amber DHFR comparison.                                     Figure 49. Amber GB_MB comparison. 
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4.2.13 Life Sciences 
This set of benchmarks includes BLAST and FASTA (performance ratios relative to Intel/Pentium4/2GHz are 
shown in Figures 50 and 51). Note that these only 1-CPU data is available for these workloads. In Blast (most 
important set of benchmarks) GS1280 shows comparable performance to ES45 and GS320. GS1280 shows 
substantial advantage (2 times) vs. Pentium4/2GHz. Note that these benchmarks use integer operations and 
do not stress memory bandwidth. GS1280 shows lower advantage in Fasta. 

 
Figure 50. Blast performance ratios.                          Figure 51. Fasta performance ratios. 
 

In Aventis and Couragen (Figure 52), GS1280 is 2-10% faster than ES45 and 1-30% faster than Itanium2. In 
other benchmarks GS1280 shows a wide range of performance: between 20% slower and 20% faster vs. 
ES45, 30% slower and 3% faster vs. Itanium2, and 40% slower and 8 times faster vs, Pentium4.  

Figure 52. Aventis and performance comparison.  Figure 53. Other benchmarks performance comparison. 
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4.3 “Killer” applications on GS1280 
The previous sections indicate that in many standard HPTC/ISV applications, GS1280 shows comparable 
performance as ES45. Compared to IBM, GS1280 shows 20-30% advantage, and much better scaling for 
16-32 CPUs.  
 
In this section, we identify and characterize applications where GS1280 shows exceptional performance  
(“killer applications”). These applications provide much more stress on memory subsystem and IP-link 
bandwidth. Our profiling data indicates that none of the ISV applications provides substantial stress on 
any of these system components. 
 
In this section, we include several examples of “killer applications” on GS1280: 
1. Applications that stress memory bandwidth: 

• Swim: from SPEComp2001 
• NAS Parallel (except EP) 

2. Applications that stress both memory and IP links bandwidth: 
• GUPS (random updates to a large memory) 

3. Many customer benchmarks 
 
4.3.1 Swim: memory bandwidth intensive application 
Swim is one of the SPEComp2001 parallel benchmarks [8]. Swim is the weather prediction application 
that performs finite-element model of the shallow-water equations. This workload provides heavy stress 
on the memory subsystem (30% memory bandwidth utilization measured). It provides low stress on the IP 
links (Figure 9). 
 
As indicated in Figure 54, GS1280 is substantially faster in this benchmark: 3-4.5 times vs. ES45, 4-5.4 
times vs. GS320, 4 times vs. IBM/Power4, 7-10 times vs. SUN. 
 

 
Figure 54. Swim comparison. 
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4.3.2 NAS Parallel 
NAS Parallel benchmarks represent a collection of kernels that are important in many technical 
applications [14]. The kernels are decomposed using MPI and can run on either shared-memory or 
cluster systems. With the exception of EP (embarrassingly parallel), the majority of these kernels (solvers, 
FFT, grid, integer sort) put significant stress on memory bandwidth (when size C is used). Figures 55 and 
56 show substantial advantage on GS1280 compared to the other systems: 1.5 times advantage vs. 
ES45 (Figure 56) and 3.5 times advantage vs. GS320 (Figure 55). The reason that this advantage is 
higher for GS320 than ES45 is because ES45 has higher memory bandwidth than GS320 (as indicated in 
Figure 5).  

 
Figure 55. GS1280 vs. GS320 in NAS Parallel.           Figure 56. GS1280 vs. ES45 in NAS Parallel. 
 

The scaling of one of the NAS Parallel solver benchmarks (SP) is shown in Figure 57.  GS1280 shows 
excellent scaling and substantial (1.8 times) advantage vs. IBM/Power4 in this benchmark. 

 

Figure 57. SP comparison.
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SP profiles 
Figure 58 shows that memory bandwidth utilization is high in SP (26%), which explains the advantage 
on GS1280. The IP links utilization in these benchmarks is low (Figure 59). We observed that IP link 
utilization is low in many MPI applications. We believe that’s because such applications are message-
passing written with much higher (cluster-type) latencies in mind.  
 
 

Figure 58. Memory Controller utilization in SP.                           Figure 59.  IP links utilization in SP. 
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4.3.3 IP-links and memory bandwidth intensive application: GUPS  
The GUPS is a multithreaded (OpenMP) application where each thread updates an item randomly picked 
from the large table [15]. Since the table is so large that it spans the entire memory in the system, this 
application stresses memory bandwidth, as well as IP links (as illustrated by profiling data in Figures 61 
and 62). In this application, GS1280 shows the most substantial advantage over the other systems 
(Figure 60). The reason is a substantial IP-links and memory bandwidth advantage on GS1280, as 
discussed in Section 3.5 (Figure 15). It is also interesting that the links show uneven utilization in Figure 
62: East/West links show higher utilization than North/South links. This is because these profiles are 
taken on a 32-CPU GS1280 system, and link utilization is higher on horizontal than vertical links on a 4x8 
torus.  

                                        
Figure 60. GUPS Performance.      

Figure 61. Memory Controller utilization in GUPS.              Figure 62. IP links utilization in GUPS. 
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4.4 Customer applications 
Many customer applications are not tuned to fit well in the on-chip caches and thus show much significant 
stress on memory and IP-link bandwidth. 
 
The examples below include several samples of customer applications: Structural Mechanics, Molecular 
Dynamics, and FFT. The data in Figures 63-65 shows 2-3 times GS1280 advantage vs. IBM/Power4, 2-5 
times advantage vs. GS320, and 2-3 times advantage vs. ES45. 

 
Figure 63. Structural Mechanics comparison.  

Figure 64. Molecular dynamics comparison.                                        Figure 65. FFT comparison.
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5. Tools for analyzing performance of multiple-processor systems: Xmesh 
 
Most of today’s mainframe and supercomputer systems consist of multiple processors. In many cases, 
such systems include a large number of processors: 64 CPUs in HP/GS1280, 128 CPUs in HP 
Superdome, 32 CPUs in IBM/p690, 128 CPUs in SUN Fire. Performance analysis of such systems with 
growing numbers of CPUs is becoming more and more challenging as we face new design problems never 
encountered in smaller-scale systems. Frequently, system-wide performance is compromised by 
bottlenecks that develop in as few as one processor.  These bottlenecks, called hot spots, can be very 
difficult to track down. They may be CPU, memory, interprocessor-link, or I/O-based bottlenecks, and 
sometimes even a combination.  It is very important when studying these bottlenecks to not only detect and 
locate them, but also to distinguish between each of these causes. Being able to identify such bottlenecks 
is the first step in improving performance in large-scale multiprocessor systems. 

 
Consider one example.  Some systems have central interleaved memory, while others are CC-NUMA 
(Cache Coherent Non-Uniform Memory Access). In some CC-NUMA systems (such as GS1280), 
multithreaded applications use a First-Touch memory allocation policy. It is possible that memory is 
allocated to a single processor, and all other processors need to access memory from that processor, thus 
generating a memory hot spot. This greatly reduces performance of a multiprocessor, compared to the 
case where memory is uniformly distributed. Tools that can recognize such bottlenecks are crucial for 
identifying such limitations and improving performance in large-scale multiprocessors. Once such 
bottlenecks are recognized, various software/hardware techniques can be used to alleviate them. In 
addition, lessons learned in the current design can be applied toward designing more efficient large-scale 
multiprocessors in the future. 

 
We have developed a tool called Xmesh that is used for monitoring and analyzing performance of large-
scale multiprocessor systems. Xmesh is based on the built-in non-intrusive performance counters provided 
by the Alpha processor 21364 (EV7). Xmesh continuously reads counter information and processes it in a 
format that is uniform for all system hardware components -- percent of utilization. It then displays this 
information in real-time as a graphical representation of the torus network, which is the interconnection of 
CPUs on Alpha GS1280 systems (Figure 66).  Within each of the numbered CPUs it reports the percent of 
utilization for the hardware components associated with it. The Xmesh reports utilization for the following 
hardware components: the CPU, the Zbox (two memory controllers), the RBox (router), the IO ports (ports 
0, 1, 2, and 3), the I/O Down Hose, the I/O Up Hose, and the North, South, East and West Interprocessor 
ports on the EV7 processor. For improved readability, the status line shows a component’s name and 
associated CPU number as the mouse is dragged over it. Figure 66 shows an example of Xmesh on a 16-
CPU GS1280 system. Each CPU is represented by a box and interconnect links reflect the links and 
cables from a real GS1280 system (as read from the configuration registers). Within each CPU, different 
boxes represent utilization of the following components: CPU (center), two memory controllers (leftmost 
lower corner), four I/O ports (upper row), and two I/O hoses (sides). Since Xmesh is based on the built-in 
performance counters, the overhead of running it is very low (we observed less that 0.3% overhead on 16 
CPUs).  

 
A color spectrum indicates levels of utilization for each hardware component. There are 10 colors in the 
spectrum, ranging from purple, which indicates low utilization, to red, which indicates high utilization. The 
spectrum of colors can be adjusted to accommodate cases where utilization is low and falls within a single 
category. For example, the utilization of less-than 10% that falls in the purple category may be 
distinguished further by shifting the 10 spectrum color changes from 1 to 10% rather than the default 1 to 
100%.  In addition to colors, the tool allows utilization values to be displayed as well. 

 
The Xmesh can be used to monitor hardware characteristics dynamically, while the system is running a 
particular application. However, it is not always feasible to watch the system interactively for extended 
periods of time (e.g. overnight, or over the weekend). In such cases, we are providing an extension of 
Xmesh, called Bmesh that allows storing Xmesh information in a file. The tool bplot is used to graphically 
view information from the file generated by the Bmesh (as illustrated in numerous figures in this paper). 
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Figure 66. Xmesh for a 16-CPU GS1280.              
 

 
 
We have used Xmesh extensively to characterize user applications that are memory, CPU, or I/O 
intensive. The intensity of stress on various system components (memory controllers, Interprocessor links, 
or I/O) can be quantified using Xmesh. For example, Figure 9 shows memory controller utilization for all 
SPECfp2000 benchmarks. This data helped us understand why some workloads show significant 
advantage on GS1280 vs. the other systems, while the others do not. For example, the workloads with 
high memory controller utilization as identified by Xmesh on Figure 9 (swim, applu, lucas, equake, mgrid) 
run substantially faster on GS1280 than other systems due to GS1280’s memory bandwidth advantage. 
 
In addition, the information obtained from the Xmesh tool can be used to monitor data flow between CPUs, 
determine resource bottlenecks, and watch for non-optimal performance. If Xmesh reveals that utilization 
factors are reaching maximum capacity and there are performance bottlenecks, a user can chose among 
several alternatives.  For instance, if there is too much I/O targeted to one CPU's disks, a user can modify 
the I/O subsystem to spread I/O usage among several I/O subsystems. If Xmesh reveals contention for 
access to memory on a particular CPU, or perhaps a CPU is reaching its maximum of memory utilization, a 
user can apply Xmesh information to modify an application to run on a particular CPU, allocate memory to 
a particular CPU, increase memory capacity, or bind processes to a particular RAD (Resource Affinity 
Domain). This is often necessary in cases where processes migrate too often, causing a slow, detrimental 
memory migration, or also when a process is using a larger than ideal memory allocation, causing it to 
visibly (in Xmesh) “spill” into one or more adjacent CPUs. With Xmesh, a user can easily detect hot spots, 
where all traffic is targeted towards a single CPU (or a small number of CPUs). With first-touch memory 
allocation, one thread can touch memory that is needed by other threads. The first thread gets all data in 
its memory, and all other CPUs need to access memory from a single-CPU memory. The Xmesh tool has 
been extensively used to recognize uneven memory usage and optimize algorithms and user interfaces to 
improve memory locality (maximize the ratio of local to remote memory accesses), and thereby help 
ensure optimal performance on CC-NUMA hardware (as a part of Tru64 Version 5.1 enhancements). 

 
The Xmesh tool is also helpful in qualification efforts where engineers can determine whether a particular 
workload drives each of the system components to saturation. The debug engineers have been using the 
tool to recognize performance problems. For example, an un-even utilization on the link due to non-
optimized routing table was recognized using Xmesh and later corrected. 
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6. GS1280 Tuning Guidelines 
 
6.1. Software tuning 
 
In this section we provide a few tips for getting the best performance on GS1280. 
Tru64 provided many important enhancements to support GS1280 architecture: 
• VM managed big-page support (for text, data, shared memory, and anonymous memory) 
• GS1280 mesh-aware VM allocation (memory allocations kept as near to the home RAD as 

possible) 
• GS1280 mesh-aware multi-path I/O (I/O sent on the shortest path to the executing CPU) 
• GS1280 mesh-aware scheduling (thread/task creations are kept close to the home RAD) 
 
The following are a few tips that are worthwhile experimenting for improving performance on 
GS1280: 
• Experiment with compiler switches. Tune for the target architecture with "-arch host" and "-

tune host".  This allows more aggressive prefetching that is better tuned for the 21364 
processor (due to exceptional memory bandwidth). Try using "-fast", which includes these 
switches.  If some tight inner loops are a bottleneck, try using "-unroll n". We have observed 
4-5% improvement from compiler tuning on many workloads (20% in more tight loops). 

• Bind processes to CPUs by either using “runon –r RAD” or a script that uses a dmpirun 
“process-file” for binding MPI processes. We’ve observed that in many applications binding 
provides a few percent improvement (higher improvement observed in some cases). 

• When running OMP code on fewer than all processors, the O/S does an excellent job starting 
the threads on a group of nearby CPUs.  However, it is sometimes beneficial to create a 
processor-set ("man processor_sets") to better specify the CPUs to use.  For example, it is 
possible to gain performance by limiting CPU usage to the CPUs that form a square (thus 
minimizing the distance between cooperating CPUs).  It may be simplest to create a 
processor-set containing all the CPUs you don't want to use, then run on the default pset 
(pset 0). 

• Use sched_distance tunable to limit the number of hops a thread/task can be scheduled 
away from home. 

• The SCS threads sometimes provide better performance than PSC threads in multithreaded 
applications. 

• “Spiking” an image usually provides additional performance gains (particularly beneficial for 
workloads where no sources are available). We have observed over 20% gain in StarCD by 
using pixie/spike. 

• Experimenting with shared memory allocation (striped or First-Touch) by modifying 
shm_allocate_striped can improve performance in some cases. 

• Using Fortran prefetch directives to manually increase levels of prefetching is another area of 
experimentation (e.g. “use dfor$prefetch”) 

• Experiment with memory refaulting. Sometimes a threaded application may know that 
memory lives in the wrong RAD, i.e., future accesses will predominantly come from a RAD 
other than the home RAD.  In these cases it may be useful to explicitly migrate the memory 
to the desired RAD, or, in general, disassociate the pages from their current home RAD such 
that "first-touch" will move them to the desired RAD.  An example of when this would be 
useful is when a threaded application uses a section of virtual memory with one access 
pattern and then subsequently will use it with a different access pattern. There are several 
routines in the libots3 library, which can be used to affect these changes.  The most generally 
useful of these routines is _OtsMigrateNextTouch(start_address, end_address).  After a 
successful call to this routine, the virtual memory in the specified address range loses its 
binding to any physical memory.  A subsequent access of that memory will move the relevant 
page to RAD from which the memory is accessed. 

• Use the latest versions of threads library. 
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• Experiment with big pages vs. small pages.  This has the most significant performance 
impact of all tuning tips. We strongly suggest trying an application with both big and small 
page settings ("vm_bigpg_*" sysconfig settings allow dynamic reconfiguring of big/small 
pages). Applications that are likely to benefit from big pages usually make random (or large-
stride) accesses to a large memory. Applications that are likely to degrade from big pages 
are mostly multithreaded applications. 
Big pages are beneficial in many applications, since they reduce the number of TB misses. 
We have observed 10-30% gain from big pages in many applications (up to 3.5 times gain in 
extreme cases). However, big pages can also be detrimental in other applications. The 
reason is that in many multithreaded applications data within one big page is shared by 
several parallel threads (while this is not the case with small pages). Using Xmesh tools, we 
have observed that in such cases, a single-CPU bottleneck (hot spot) is generated: a set of 
big pages is accessed by a single thread (First-Touch policy), and all other threads access 
data from that single CPU. Figure 67 indicates that within the same set of benchmarks 
(SPEComp2001), we have some that gain from big pages, and others that gain from small 
pages. The GUPS benchmark shows significant improvement from big pages for memory 
sizes between 2MB and 512MB (Figure 68). 

 

Figure 67. Performance effects from big pages in SPEComp2001.      Figure68. Performance ratio (big/small) in GUPS. 
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6.2 Configuring GS1280 for best performance 
 
In this section we describe how to configure GS1280 for best performance. 
We include data on following: 
• Performance differences between ES80 (ring) and GS1280 Model8 (GS1280). 
• Performance effects from memory striping. 
• Performance degradation from populating only one memory controller vs. two. 
• Performance effects from 4GB vs. 1GB memory. 
• Configuring I/O for best performance. 
 
 
6.2.1 Performance differences between ES80 (ring) and GS1280 Model8 (GS1280) 
The interconnect configuration in ES80 is the “ring” where all processors are connected in a ring 
configuration. The 8-CPU drawer in GS1280 uses a torus interconnect (Figure 69). 
 
The performance degradation on ES80 vs. GS1280 is between 15-20% on a system where interconnect 
is not heavily used (Figure 70) and 20-50% on a system with heavily loaded interconnect (Figure 71). 
Note that the applications that do not stress IP links will not experience any performance difference 
between ring and torus. 

 
Figure 69. Torus interconnect.            Figure 70. Latency comparison.                            Figure 71. Bandwidh/latency comparison. 
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6.2.2. Memory Striping 
Memory striping allows interleaving of 4 cache lines across 2 CPUs, starting with CPU0/controller0, 
then CPU0/controller1, and then CPU1/controller0, and finally CPU1/controller1. The CPUs chosen to 
participate in striping are the closest neighbors (CPUs on the same module). Striping provides 
performance benefit in alleviating hot spots, where a hot-spot traffic is spread across 2 CPUs (instead 
of one). The disadvantage of memory striping is that it puts additional burden on the IP links between 
pairs of CPUs.  
 
The results of our evaluation of memory striping are presented in Figures 72 and 73. Figure 72 shows 
that striping degrades performance 10-30% in throughput (as well as MPI) applications due to 
increased inter-processor traffic (we observed degradation as high as 70%). Figure 73 shows that 
striping improves performance of a hot-spot traffic pattern (all CPUs read data from CPU0) up to 
80%. The hot-spot traffic is recognized using the Xmesh tool (Figure 74). The tool indicates that the 
IP and memory traffic on the links to/from CPU0 (left corner) is higher than on any other CPU. We 
observed 30% improvement from memory striping in real applications that generate hot-spot traffic.  
 
A more extensive study over a variety of applications indicated that only a small portion of 
applications benefit from striping (while most others degrade performance). Therefore, the default 
setting for GS1280 is with striping turned off. We recommend that most users keep striping at the 
default value. We recommend turning memory striping on only in exceptional cases where Xmesh 
shows hot-spot traffic that cannot be eliminated using software techniques. 

 
 
 

 
Figure 72. Degradation from striping.             Figure 73. Improvement from striping.              Figure74. Xmesh with a hot-spot. 
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6.2.3 Configuring Memory for Performance  
The EV7 processor has two memory controllers (ZBoxes). The GS1280 memory can be configured as follows: (1) 
partially populated memory with only one memory controller populated (5 RIMMs: 4 required and 1 optional for 
redundancy), (2) fully populated memory with both memory controllers populated (10 RIMMs: 8 required and 2 
optional for redundancy). The 5th (optional) channel provides additional redundancy in case of failure on any of 
the channels. Our experiments show that the 5th channel does not introduce any performance penalty. Figure 75 
shows performance improvement of fully vs. partially populated memory in NAS Parallel and SPECfp2000 
benchmarks. Most NAS Parallel benchmarks are memory-bandwidth intensive (except for EP, Section 4.3.2). 
Several SPECfp2000 benchmarks stress memory bandwidth (Figure 9). The data in Figure 75 indicates that 
memory-bandwidth intensive workloads gain between 5% and 15% from fully vs. partially populated memory. In 
synthetic tests (as McCalpin STREAM benchmark), the improvement is much higher (50%). 

Figure 75. Improvement from 2 memory controllers in NAS Parallel and SPECfp2000. 
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memory. The gain is mainly due to higher number of devices (not memory size). The improvement is higher 
(12%) in STREAM.  

Figure 76. Improvement from 4 GB vs. 1GB memory. 
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6.2.4 Configuring I/O for Performance 
The GS1280 system can be configured such that each processor has its own I/O drawer. This 
configuration provides the highest I/O bandwidth (measured 1 GB/s per IO7, Section 3.6). However, for 
applications that do not demand such high bandwidth, GS1280 can be configured with lower number of 
IO drawers (minimum one I/O drawer on the entire system). In the case where fewer I/O drawers than 
CPUs are used, it is important that I/O is configured such that the overall latency is minimized (e.g. 
checkerboard pattern cases where there are twice as many CPUs that IOs). An example of a 32-CPU 
GS1280 with 8 I/O drawers is shown in Figure 77. 
 

Figure 77. An example of 32-CPU GS1280 with 8 I/O drawers. 
 
The high-performance I/O (Xshelf) can be used to further maximize delivered I/O bandwidth (as 
illustrated in the Figure 78). Additional details on configuring I/O for performance can be found in [29]. 
 

Figure 78. High-performance I/O in 32-CPU GS1280. 
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 7. Summary and Conclusions 
We evaluated the architecture and performance characteristics of the HP AlphaServer GS1280, based on the 
Alpha 21364 processor. The Alpha 21364 shows substantial departure in processor design compared to the 
previous-generation Alpha processors. It incorporates (1) an on-chip L2 cache (smaller than the off-chip L2 
cache in the previous-generation 21264), (2) two memory controllers that provide exceptional memory 
bandwidth, and (3) a router that allows efficient glue-less large-scale multiprocessor design. It places on a 
single chip all components that previously required an entire CPU module. Our data shows that this is a 
superior design for building large-scale multiprocessor systems. The exceptional memory bandwidth that 
GS1280 provides is important for a number of applications that cannot be structured to allow for cache reuse. 
We observed a 2-4 times performance advantage of GS1280 vs. the previous-generation AlphaServer GS320 
in these types of applications (e.g. NAS Parallel, StarCD). Efficient local-memory high-bandwidth memory 
design makes GS1280 an excellent match for throughput applications (e.g. superior performance and scaling in 
SPECfp_rate2000 and Abaqus/Throughput). The low latency and exceptional bandwidth on IP links allow for 
very good scaling in applications that cannot be blocked to fit in the local memory of each processor. GS1280 
provides and excellent NUMA support in both hardware and software for parallel and commercial applications 
(e.g. SPEComp2001, Dyna/SMP, Transaction Processing and Java applications). We observed the highest 
performance advantage of GS1280 vs. the previous-generation AlphaServer GS320 is in applications that 
stress memory bandwidth and IP links the most (e.g. 11 times in GUPS). Since Alpha 21364 preserved the 
same core as the previous-generation Alpha 21264 (and the CPU clock speed is comparable), the applications 
that are blocked to fit well in the on-chip caches perform comparably on GS1280 and GS320. In some cases, 
applications can take advantage of the larger 16MB cache, and therefore run faster on GS320 than on GS1280.  
 
The GS1280 system shows a 20-30% advantage vs. IBM/Power4 Regatta system in majority of applications 
evaluated here. In almost all applications, GS1280 shows better scaling than IBM due to lower contention for 
memory (e.g. SPECfp_rate2001: 40% on 32 CPUs than vs. 10% advantage on 1 CPU). In floating-point 
workloads that run close to the peak speed (e.g. Linpack NxN), Alpha platforms show a disadvantage compared 
to the most other-vendor platforms. 
 
We have heavily relied on profiling analysis based on built-in performance counters (Xmesh) throughout this 
study. We have used profiles to explain why some workloads perform exceptionally well on GS1280, while 
others show comparable (or even worse) performance than GS320 and ES45. In addition, these tools are 
crucial for identifying areas for improving performance on GS1280: e.g. Xmesh can detect hot-spots, heavy 
traffic on the IP links (indicate poor memory locality), etc. Once such bottlenecks are recognized, various 
techniques can be used to improve performance. 
 
We determined that some applications benefit from big pages (applications that randomly access large memory 
benefit the most), while others degrade (many parallel applications on 16 and 32 CPUs). Since it is difficult in all 
cases to determine which applications will benefit from big pages and which will not, we recommend running an 
application both ways (system should be booted with big pages, and small pages should be set dynamically 
using sysconfig). Also, binding processes to CPUs helps improve performance in some cases. Re-compiling 
with EV7 tuning switches can also be beneficial. 
 
We determined that an IP ring topology in ES80 provides performance degradation (20-30%) compared to a 
torus only in applications with poor memory locality. Similarly, using 16 CPUs on a 32-CPU system will result in 
lower performance than on a dense 16-CPU system (due to a loss of wrap-around links). We determined that 
memory striping is beneficial only for applications that generate a hot spot. However, memory striping degrades 
performance of most applications. Therefore, our recommendation is to keep striping set to OFF (default value). 
We also determined that fully populated memory provides 5-15% performance gain in memory-bandwidth 
intensive workloads compared to a half-populated memory. The 4GB memory per CPU also provides additional 
gain compared to 1 GB memory. 
 
The GS1280 provides flexibility in configuring I/O depending on application requirements (from a maximum of 
one I/O per CPU to a minimum one I/O on entire system). The measured raw-device (no files system) I/O Read 
bandwidth is 1 GB/s per I/O drawer. We observed that I/O bandwidth scales linearly as additional I/O drawers 
are added. The GS1280 provides substantial improvement in I/O bandwidth compared to ES45 (3 times) and 
GS320 (8 times). When using fewer I/O drawers, it is important to configure them in such a way that overall 
latency in the mesh is minimized (e.g. checkerboard pattern). 
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