Otto-Bild Stephan Mertens - Publications
Home | Research | Publications | Teaching | Smorgasbord

Proof of the local REM conjecture for number partitioning II: Growing energy scales

Christian Borgs, Jennifer Chayes, Stephan Mertens and Chandra Nair


We continue our analysis of the number partitioning problem with $n$ weights chosen i.i.d. from some fixed probability distribution with density $\rho$. In Part I of this work, we established the so-called local REM conjecture of Bauke, Franz and Mertens. Namely, we showed that, as $n \to \infty$, the suitably rescaled energy spectrum above some fixed scale $\alpha$ tends to a Poisson process with density one, and the partitions corresponding to these energies become asymptotically uncorrelated. In this part, we analyze the number partitioning problem for energy scales $\alpha_n$ that grow with $n$, and show that the local REM conjecture holds as long as $n^{-1/4}\alpha_n \to 0$, and fails if $\alpha_n$ grows like $\kappa n^{1/4}$ with $\kappa>0$. We also consider the SK-spin glass model, and show that it has an analogous threshold: the local REM conjecture holds for energies of order $o(n)$, and fails if the energies grow like $\kappa n$ with $\kappa >0$.

BiBTeX Entry

  author =	 {C. Borgs and J. Chayes and S. Mertens and C. Nair},
  title =	 {Proof of the local {REM} conjecture for number partitioning {II}: Growing energy scales},
  journal = {Rand.\ Struct.\ Alg.},
  year = {2009},
  volume = {34},
  pages = {241--284}

npp-rem3.pdf (pdf, 260 kB)

top Home | Research | Publications | Teaching | Smorgasbord

© by Stephan Mertens
URL: http://
updated on Monday, January 18th 2010, 18:03:41 CET;