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We revisit recent discussions concerning the Gibbs paradox—the apparent discrepancy between
the entropy change upon mixing identical gases as evaluated from the statistical mechanics of
classical distinguishable particles and macroscopic thermodynamics. Contrary to what is often
stated, we show that thermodynamics does not require this entropy of mixing to be zero. A zero
value follows from the implicit assumption that the identical gas particles are indistinguishable. If
the identical particles are explicitly assumed to be distinguishable, thermodynamics yields the
same entropy of mixing as classical statistical mechanics.
[DOI: 10.1063/1.3657773]

I. INTRODUCTION

Recently, Versteegh and Dieks1 wrote an interesting arti-
cle on the statistical mechanics of identical but distinguish-
able particles. They argue that classical mechanics requires
that particles be considered as distinguishable from one
another even if they are identical, that is, have the same
intrinsic properties such as charge and mass.2 Classical par-
ticles follow continuous and non-intersecting trajectories in
phase space and their positions and momenta can be pre-
cisely determined in principle. These particles can be labeled
or distinguished by observing their different histories. Con-
sequently, interchanging the labels on any two particles has a
physical consequence and creates a new microstate of the
system. The relabeling of the particles leads to a different
physical realization of the system because it corresponds to a
discontinuous change in the trajectory of either particle, the
result of which cannot be generated by a given physical pro-
cess prior to the interchange. As is well known, explicitly
enforcing the distinguishability of the particles leads to the
prediction in classical statistical mechanics that the mixing
of two identical ideal gases leads to a nonzero change in the
entropy of the combined system.

At first glance such a result is puzzling. Macroscopic ther-
modynamics supposedly requires that the entropy change
upon mixing two identical ideal gases be equal to zero. If
two containers of, say oxygen, are separated by a partition,
the removal of the partition should not lead to an increase in
the entropy of the system because there are no discernible
changes. We can easily return the partition, without requiring
work to be done, to bring the system back to its original
state. Because there is no net change in the entropy for this
apparently cyclic process, and the entropy could not have
decreased when the partition was returned—because no
work was performed—we conclude that the removal of the
partition cannot have resulted in an increase in the entropy.

If the separate containers instead held different gases, say
oxygen and nitrogen, the removal of the partition would lead
to an obvious change in the properties of the system. Further-

more, we cannot easily return the system to its original sepa-
rated state simply by replacing the partition. Work is
required to unmix the gases, and so the entropy change upon
mixing the different gases must be positive. Because thermo-
dynamics makes no explicit reference to the molecular con-
stituency of matter, the thermodynamic analysis appears to
require as input only that the particles are identical or not. In-
formation on whether or not the particles are distinguishable
or indistinguishable seems not to be needed.
Because we expect the thermodynamic and statistical me-

chanical entropies to be consistent, the discrepancy between
the zero value of the thermodynamic entropy of mixing identi-
cal gases and the nonzero value that follows directly from the
classical statistical mechanics of distinguishable particles has
been labeled as the Gibbs paradox. To bring the prediction of
classical statistical mechanics in line with that of thermody-
namics, the total number of microstates is divided by N!
(where N is the total number of identical particles) to compen-
sate for the apparent over counting of classical microstates.
Despite the previous argument for the distinguishability of
classical particles, we still have to treat the particles as being
indistinguishable to maintain consistency between classical
statistical mechanics and thermodynamics. The justification
for treating particles as indistinguishable is usually drawn
from quantum mechanics, because this property follows from
conditions on the wave function of identical particles.
Although we may be satisfied in invoking quantum

mechanics to resolve this discrepancy—and why not, isn’t the
world governed by quantum mechanics?—Versteegh and
Dieks1 argue that this use does not resolve the problem.3 For
one, there are cases in which identical quantum particles
behave as being distinguishable, so indistinguishability is not
a universal property.2 In addition, thermodynamics is a macro-
scopic approach and does not make explicit reference to the
molecular make-up of matter. Why then should thermody-
namics not be able to describe properly the thermal properties
of classical gases? Furthermore, because the thermodynamic
entropy of mixing of identical gases is apparently required to
be zero, we have the interesting result that a macroscopic
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description of matter, whose foundations were laid when only
classical mechanics was known, anticipated a quantum me-
chanical prediction of molecules.

Our discussion seems to lead to an inescapable conclusion
as argued by Versteegh and Dieks.1 The statistical mechani-
cal, or Boltzmann, entropy, and the thermodynamic, or Clau-
sius, entropy, are not the same entity and have different
meanings. To avoid any problems, we need to realize that
entropy is defined differently in statistical mechanics and
thermodynamics. Others have argued that agreement can be
preserved by the introduction of a reduced Boltzmann en-
tropy for classical particles, whereby the division by N! is
automatically included.4

Although the previous arguments and discussion are com-
pelling, what appears to not have been appreciated fully is
that thermodynamics does not require that the entropy of
mixing of identical gases be zero. The thermodynamic analy-
sis rests on an implicit assumption that the identical particles
are indistinguishable. If the identical particles are explicitly
assumed to be distinguishable, the thermodynamic entropy
of mixing matches precisely the classical statistical mechani-
cal prediction. The specification of whether or not the par-
ticles are distinguishable or indistinguishable is up to the
experimenter. Because the results of known experiments, or
at least the types of experiments that can be performed at
present, appear to be consistent with identical particles being
indistinguishable, nearly all the thermodynamic analyses of
the mixing of identical gases implicitly assume the indistin-
guishability of the particles.

Such an assumption, however, need not always be invoked
in thermodynamics, which we demonstrate in Sec. II. There
we show that the classical statistical mechanical results for
both distinguishable and indistinguishable particles can be
directly obtained within thermodynamics. Hence, there is no
Gibbs paradox after all. Thermodynamics and classical sta-
tistical mechanics are consistent with one another, and
describe the same entropy concept.

An excellent discussion that overlaps with some of what
we present here and includes an historical overview of
aspects of the Gibbs paradox which appear in Gibbs’ writ-
ings, appears in the work of Jaynes.5 Gibbs was aware that
thermodynamics does not require the mixing of identical
gases to be zero. Supplemental information about the distin-
guishability of the particles had to be provided by the experi-
menter. He did not reiterate this point in his later writings on
statistical mechanics, which might explain why the Gibbs
paradox has persisted. An acknowledgment that the zero en-
tropy of mixing in identical gases is not a fundamental fact
of thermodynamics, and a proper thermodynamic analysis of
the mixing of distinguishable particles should be consistent
with classical statistical mechanics, can also be found in the
work of Dieks,2 van Kampen3 and Nagle.6 An alternate
viewpoint for the resolution of the Gibbs paradox has been
presented by Swendsen.7 Here, the entropy of mixing of
identical particles, either distinguishable or indistinguish-
able, is always taken to be zero, while a different counting
scheme for enumerating the number of microstates of classi-
cal distinguishable particles is proposed that naturally gives
rise to the required division by N!.

II. ENTROPY OF MIXING OF IDEAL GASES

We first consider the thermodynamic derivation of the en-
tropy of mixing of two different ideal gases, A and B.8 In a

container of total volume V at fixed temperature T, a partition
separates the two gases such that the initial pressures of each
are identical and equal to P. Thus, the number of particles and
initial occupied volumes of each gas are related as follows

NA

VA
¼ NB

VB
; (1)

where Ni and Vi are the number of particles and initial vol-
ume of species i, and V¼VAþVB. The partition is now split
into two movable membranes, one that is permeable to A but
impermeable to B, and the other is permeable to B but
impermeable to A. The latter membrane is now moved to
one side, such that A undergoes a reversible, isothermal
expansion to occupy the entire container. A portion of A
now overlaps with B, but because ideal gas particles at the
same temperature are (in effect) noninteracting and the mem-
brane is permeable to B, the expansion occurs as if B were
not present. Starting from the combined first and second
laws, the differential change in the entropy of A is given by

dSA ¼ 1

T
dUA þ

PA

T
dVA; (2)

where SA, UA, and PA¼NAkT=VA are the entropy, internal
energy, and the pressure of gas A, respectively, with k being
the Boltzmann’s constant. Because the process is isothermal
(and at constant mass), the internal energy of the ideal gas is
constant, so Eq. (2) evaluated over the reversible expansion,
from the initial volume VA to the final volume V yields

DSA ¼ NAk ln
V

VA
¼ #NAk ln yA; (3)

where yA is the mole fraction of A in the final mixture, and
we have used Eq. (1). The other membrane is now reversibly
and isothermally expanded so that B is allowed to occupy the
total volume V as well. Similar calculations yield

DSB ¼ NBk ln
V

VB
¼ #NBk ln yB: (4)

The sum of these two entropy changes leads to the total en-
tropy of mixing for this process

DSmix ¼ #NAk ln yA # NBk ln yB: (5)

If the number of particles of type A and B are the same, we
have that DSmix ¼ Nk ln 2, where N¼NAþNB.

For later use, we note that the entropy of the final state, or
that of the mixture of A and B, can be written as

Sfinal ¼ DSmix þ SAinit þ SBinit; (6)

where Siinit is the initial entropy of species i before the mixing
process occurs, and all quantities are evaluated at the same
temperature and pressure. By using Eqs. (5) and (6), we can
show that the partial molar entropy of species i in the ideal
gas mixture, !Si, is given by9

!Si ¼ si # k ln yi; (7)

where si is the entropy per particle of species i at the same
temperature and pressure of the mixture and !Si is also a per
particle quantity.
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In the derivation of Eq. (5), we needed only to know that a
molecule of type A can be distinguished from a molecule of
type B. We did not require information about the distinguish-
ability or indistinguishability of A or B particles among
themselves.

We now consider how to proceed if we have identical gases
on either side of the partition at the start of the process. As
noted, it is typically argued that the removal of the partition
should not cause any property of the entire system to change.
We begin with two identical gases at the same T and P, and
finish with the same gas at the same T and P, with no change
in the volume of the composite system. The final entropy
should just be the sum of the two entropies of the initial identi-
cal gases, which in this case implies no change in the entropy
for this process. How can the entropy of mixing identical gases
be anything other than zero? A nonzero value implies that, in
principle, work can be extracted from this process. In other
words, simply by opening a door, and allowing the air on ei-
ther side to mix, we can create a process to generate work.
Because no one is aware of any way to implement this process,
the entropy change upon mixing identical gases must be zero.

Nevertheless, is this conclusion warranted? We have im-
plicitly assumed that the particles comprising the identical
gases are indistinguishable. Because there is no known way
of tracking the identical particles on either side of the parti-
tion before it is removed, we should not be able to devise a
process to extract work from the mixing of identical gases.
We don’t yet have the means, or more specifically a mem-
brane, to identify or prohibit the motion of some subset of a
collection of identical particles. Hence, the conclusion that
the mixing of identical gases should not lead to an increase
in entropy follows from our experience, or what is our inabil-
ity to carry out a particular process, rather than what is
strictly required from thermodynamics.

To see more clearly why a zero value of the entropy of
mixing identical gases is not required by thermodynamics,
we repeat the previous thermodynamic analysis while mak-
ing the explicit assumption that the identical gases on either
side of the partition are distinguishable. Because we can
track and keep separate the identities of each particle, we are
now able to employ membranes that are permeable only to a
given subset of the identical particles. Thus, as before, we
split the initial partition into two membranes, one that is per-
meable to just those particles initially on the right and the
other that is permeable to just those particles initially on the
left. The situation is now equivalent to the earlier analysis of
the mixing of the two pure gases A and B. If the number of
particles of each identical gas is the same, we therefore find
that DSmix ¼ Nk ln 2 for the mixing of two identical and dis-
tinguishable gases, matching what is obtained from classical
statistical mechanics.1

In this thought experiment the practicality of devising
such a membrane to separate identical but distinguishable
particles should not confuse the fundamental issue.6 In prin-
ciple, classical particles can be traced indefinitely, and so in
principle, there should be some way to separate particles
based on their past trajectories and origins.2 Furthermore, if
we are interested only in the changes of a given state func-
tion such as the entropy, the actual manner in which a pro-
cess is carried out is irrelevant in thermodynamics.
Thermodynamics makes frequent use of impractical reversi-
ble pathways, processes that are essential to determining
changes in the entropy of a system. As an example, we often
consider in thermodynamics the reversible addition or dele-

tion of particles from a system. How this process is carried
out is almost never specified. In statistical mechanics, some
details of the process are specified, though the pathway is by
no means practical. Because the chemical potential of a par-
ticle is related to the reversible work required to insert or
delete a particle, expressions for the chemical potential are
obtained by considering various unphysical pathways in
which a particle is either “slowly turned on or off” via some
interparticle potential coupling parameter,10 or “scaled up or
down in size.”11

The membranes we have discussed are clearly not the
standard passive membranes used for separating non-
identical particles, but instead require some level of informa-
tion processing through the use of submicroscopic computers
located within the membranes or Maxwell’s demon.2 The
gathering of the needed information, say by detecting light
photons scattered by the particles, leads to another increase
in the entropy of the universe, which cannot be overlooked
in some processes.12–14 We argue that this entropy increase
occurs separately from the entropy increase due to the mix-
ing of distinguishable particles. We can employ similar
active membranes to aid in the mixing of the different gases
A and B. The entropy change that should be assigned to
these membranes or Maxwell’s demon would appear in addi-
tion to the entropy change due to mixing the different gases,
and reflects our choice of having followed a more difficult
route to the same final state. Passive membranes presumably
carry out the separation based on size differences and not on
molecular histories. Thus, no entropy penalty is incurred by
or assigned to these membranes. Active membranes must
gather information about which particle is approaching some
molecular-sized trap door, information that is needed when
selecting between ideal gas particles. As noted, this data col-
lection gives rise to another contribution to the entropy
increase of the universe.12 Switching from passive to active
membranes does not alter the fact that there is a separate en-
tropy increase due to the mixing of distinguishable particles,
or even different gases A and B. Nevertheless, we note that
the thermodynamics of Maxwell’s demon is an important
topic that might require further investigation. As discussions
of Maxwell’s demon illustrate,13,14 there is an intimate rela-
tion between entropy and accessible information, which is
also one of the conclusions of the present work.
The entropy of mixing identical distinguishable particles

can be obtained in a related way using Eq. (7). For example,
we can express the entropy of a mixture comprised of two
species A and B in terms of the sum of the product of the
partial molar entropy of species i and the number of particles
of i

Smixture ¼ NA
!SA þ NB

!SB: (8)

For identical but distinguishable particles we must treat the
gas as a mixture comprised of separate species. Note that A
and B are treated as different components because we have
some way of distinguishing their identities. If there were a
way to distinguish the identities of particles of a single kind,
we should then treat the identical particles as comprising a
mixture with N total species.6 So, if we begin with a gas of
NR identical but distinguishable particles on the right side,
with each of the NR components having a mole fraction of
1=NR, and NL identical but distinguishable particles on the
left, each with a mole fraction of 1=NL, the total entropy of
this initial state is
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Sinitial ¼
X

NR

!SR þ
X

NL

!SL

¼ NRsþ NRk lnNR þ NLsþ NLk lnNL; (9)

where, for example, !SR is the partial molar entropy of any
one of the particles on the right side and s refers to the same
entropy per particle of any one of the N identical particles.
After mixing with no change in T and P, the entropy of the
final state is equal to

Sfinal ¼
X

N

!Sf ¼ Nsþ Nk lnN; (10)

in which the final mole fraction of each component is
y¼ 1=N and the partial molar entropy of any one of the N
particles in this final state is !Sf . Hence, the entropy of mixing
identical but distinguishable ideal gases is given by

DSmix ¼ #NRk ln
NR

N
# NLk ln

NL

N
; (11)

a result identical to Eq. (5). If the number of particles of each
identical gas is the same, we again find that DSmix ¼ Nk ln 2.

In contrast, if we assume that the identical gases are indis-
tinguishable, that is we cannot keep track of the identities of
the particles, we are also assuming that there are no mem-
branes capable of allowing only some subset of particles to
pass freely through them. Thus, a given membrane will be
permeable to either all or none of the indistinguishable par-
ticles. We can now mix the gases by again splitting the parti-
tion into two permeable membranes. But because the gases
are allowed to pass freely through either membrane, the net
force on the membranes will always be zero. No work is
therefore required to displace the membranes either to the
right or left. Given that the temperature is constant, so that
there is also no change in the internal energy, the heat trans-
fer into or out of the system must also be zero. Consequently,
the entropy change upon mixing identical and indistinguish-
able gases is zero. Likewise, we cannot treat the indistin-
guishable particles as separate components; each identical
gas is a pure component system. Hence, the partial molar en-
tropy is equal to the entropy per particle of the pure compo-
nent gas, which leads us to conclude that DSmix¼ 0. This
result also follows directly from the classical statistical me-
chanical entropy when the total number of accessible states
of the system is divided by N! to account for the indistin-
guishability of the particles.

III. CONCLUSIONS

The predictions of the thermodynamic and statistical me-
chanical entropies, whether for distinguishable or indistin-
guishable identical particles, are consistent. Hence, there is
no such thing as the Gibbs paradox. Thermodynamics, just
like statistical mechanics, requires that all the information
needed to completely reproduce the system be specified. For
nearly all systems of interest for which a thermodynamic
analysis is performed, we invoke what is known as the
Duhem’s theorem: a thermodynamic state is completely
characterized by specifying only the number of particles of
each species and two other independently variable proper-
ties.15 The need for such a limited amount of information is

based on experience. At present, there appears to be no way
to separately label and track the locations of identical par-
ticles in a fluid. Hence, the only relevant thermodynamic
descriptor of a given species seems to be its total number of
particles. In other words, we have assumed from the outset
that the particles are indistinguishable. If the particles were
distinguishable in some experimentally realizable way, this
information would have to be included in the set of variables
used to reproduce the thermodynamic state of the system.2,5

Consequently, the value of the entropy of mixing gases is
not constrained by thermodynamics, but rather by the intrin-
sic properties of the system. The entropy of mixing depends
upon what information is accessible to the experimenter. As
van Kampen3 astutely has reminded us, the experimenter
sometimes chooses to neglect some potentially accessible in-
formation. For example, the thermodynamic analyses of
compressors and turbines often use tabulated values of the
entropy of steam, which were generated by ignoring the fact
that the steam is actually a mixture of normal and heavy
water.
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