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When a thick cylindrical coin is tossed in the air and lands without bouncing on an inelastic
substrate, it ends up on its face or its side. We account for the rigid body dynamics of spin and
precession and calculate the probability distribution of heads, tails, and sides for a thick coin as a
function of its dimensions and the distribution of its initial conditions. Our theory yields a simple
expression for the aspect ratio of homogeneous coins with a prescribed frequency of heads or tails
compared to sides, which we validate using data from the results of tossing coins of different
aspect ratios.VC 2011 American Association of Physics Teachers.
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I. INTRODUCTION

Physical problems that involve probabilistic outcomes
range from the statistical mechanics of large ensembles of
particles to the seemingly simple games of chance such as
the toss of a coin and the spin of a roulette wheel. Not sur-
prisingly, in systems with many degrees of freedom, the
accompanying phase space is large, and we can expect
chance to play an important role in determining how the sys-
tem evolves. Even in systems with a few degrees of freedom,
such as those associated with games of chance governed by
deterministic equations of motion, the outcomes can be ran-
dom due to the amplification of small variations in the initial
conditions. Poincaré was the first to think physically about
probability in his classic paper on the roulette wheel.1 Later
Hopf showed that the underlying physical processes are re-
sponsible for the regularity property of probability;2 that is,
the observed frequencies are almost constant. This advance
was particularly important because it provided a physical
context for the method of arbitrary functions introduced by
Poincaŕe in determining probability distributions. Hopf was
among the first to show the role of the laws of physics in
determining the flow of initial distributions to the final states
in a system that can be described in terms of probability dis-
tributions, particularly when considerations of symmetry or
invariance alone do not suffice.3,4

In the context of the coin toss, the purportedly random
outcome can be understood in different ways. Statistically,
the equal likelihood of heads and tails is suggested from
an analysis of a large sequence of experiments that sample
the space of outcomes. An interpretation based on symme-
try suggests that, because there are only two possibilities
(for a coin of zero thickness), both faces should have
equal probabilities. This conclusion assumes that the coin
can actually explore both configurations (heads and tails)
with equal likelihood, which is not always true in a real
coin toss. For example, a coin that does not flip, but pre-
cesses as it spins can end up the same way as it started.
To really understand the randomness in the outcome of a
coin toss, we must introduce probability into a mathemati-
cal and physical description of the process. A distribution
of initial conditions evolves dynamically leading to out-
comes that have effectively “forgotten” the initial condi-
tions either because the system parameters and=or initial

conditions take on particular ranges of values and=or the
system has extreme sensitivity to initial conditions (such
as in chaotic systems with one or more positive Lyapunov
exponents).
In this paper, we focus on the simplest situation corre-

sponding to the case for which the system has dynamical
equations that are integrable and allow us to explicitly under-
stand how a distribution of the initial conditions leads to
effectively random outcomes via a dynamical flow. A first
step in incorporating probability into the physics of the coin
toss was done by Keller,5 who considered the simple but illu-
minating case of a coin of zero thickness spinning about a
horizontal axis passing through a diameter, which eventually
lands without bouncing. He showed that such a coin toss
becomes fair, that is, P(heads)¼P(tails)¼ 1=2, in the as-
ymptotic limit of infinite angular velocity x and vertical ve-
locity u, when the phase space of any probability distribution
about some nominally deterministic initial conditions (x, u)
is homogeneously and equally divided between the possible
outcomes, that is, heads and tails. He showed by explicit cal-
culation how the flow of the dynamical system with a distri-
bution of initial conditions to the final outcome determines
the probability of the outcomes. A later report included the
dynamics of bouncing in the plane into this minimal model
and showed how any initial probability distribution is whit-
tled away exponentially fast.6

Adding a third dimension involves a number of new
effects—the coin has two more rotational degrees of freedom
in addition to one translational degree of freedom (which is
irrelevant); the complex dynamics of bouncing because the
coin can land on its edge, side, or face and thus end up nei-
ther with heads or tails; and the finite thickness of the coin,
which is more cylinder-like. Diaconis, Holmes, and Mont-
gomery analyzed the three-dimensional dynamics of the toss
of a coin of zero thickness,7 and emphasized the role of the
bias induced by the initial conditions. Others have studied
the effects of bouncing on a substrate to understand how col-
lisions can also lead to randomness.8–11 A recent book elabo-
rates on the nature of randomness in mechanical games of
chance, including the coin toss, by including the effects of
air resistance and bouncing.12 These more complex models
and experiments serve to confirm that the randomness in a
coin toss stems primarily from the dynamical flow that acts
on the uncertainty in the initial conditions.
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Accounting for the finite thickness of a coin leads to a
new possibility and increases the phase space of outcomes
to include that of landing on an edge—an event that has a
small but nonzero probability.13 For a cylindrical coin of
thickness h and diameter D¼ 2a, which is tossed and lands
without bouncing, the probability of landing on a side is a
function of its aspect ratio n¼ h=D. The coin will almost
surely land on a face when n ! 0, and will almost surely
land on its side when n ! 1. Continuity suggests that as n
[ [0, 1) is varied, so will the probability of landing on ei-
ther heads=tails or sides. This variation leads naturally to
two related questions. What is the aspect ratio of a fair
“3-sided” coin? A fair 3-sided coin is one that starts with a
vigorous initial spin and large upward velocity, and lands
on heads, sides, and tails with equal probability. How can
we build coins with a prescribed probability for landing on
their side or face?

Mosteller14 described an anecdote about how John von
Neumann solved the problem of a fair 3-sided coin almost as
it was posed, announcing the answer to an astonished audi-
ence, “n ¼ 1=2

ffiffiffi
2

p
" 0:357!” von Neumann must have

solved this problem using considerations of symmetry and
the geometrical notion of fairness; that is, assuming all possi-
ble orientations of the coin are likely, what proportions
should the disk-like coin have so that the areal projection of
its faces and sides on a circumscribing sphere is identical to
each other? Although this assumption is plausible for a rap-
idly spinning coin, it neglects that the spinning coin must sat-
isfy Newton’s equations of motion (actually, Euler’s
equation for rigid body dynamics) and this equation enforces
some conservation laws (angular momentum in particular).
This system also highlights a classical conundrum in proba-
bility known as “Bertrand’s paradox.” That is, the probabil-
ities of an event are ill defined unless the mechanism that
produces the random variable is clearly prescribed.15 A way
around Bertrand’s paradox is to use the principle of
“maximum ignorance,” as given by Jaynes,16 and then von
Neumann’s result is correct. Given the knowledge of a physi-
cal law, we must account for it, and we cannot ignore the
conservation of angular momentum.

In this paper, we use the geometry and dynamics of rigid
body motion to derive simple analytical expressions for the
probability of landing on heads, sides, or tails for a coin that
is tossed vigorously, spins in the air, and lands without
bouncing on an inelastic substrate, such as the palm of one’s
hand or a pile of sand. These expressions generalize the ear-
lier results for coins of zero thickness,7 and allow us to see
how probability depends on the geometry of the coin via its
aspect ratio n and the dynamical angle w which characterizes
the precession of the coin, as determined by its initial angular
momentum. We find that a notion of fairness based on rigid
body dynamics yields a fundamentally different probability
distribution for the outcomes compared to the result based
on the purely symmetry-based notion of fairness. In particu-
lar, the new criterion yields an aspect ratio of n ¼ 1=

ffiffiffi
3

p
for

an equal probability of heads, sides, and tails when the coins
are spun rapidly.19

Simple experiments qualitatively confirm our theory
and allow us to prescribe criteria for designing coins with
a prescribed probability distribution of landing on heads,
tails, or sides. Our approach also allows us to illustrate
the role of skill as exemplified by the ability to bias the
outcome of the coin toss using the law of conditional
probabilities.

II. DYNAMICS OF SPIN

A. Mathematical formulation

We assume that a coin is made of a homogeneous mate-
rial and is axisymmetric, with its initial orientation such that
the normal vector N(t) outward from the head points
upward, that is, N(0)¼ z, and its initial angular velocity is
X. Therefore its angular momentum is M¼ IX, where I is
the moment of inertia tensor, with principal moments
of inertia I1 ¼ I2 ¼ 1

4 ðma
2 þ 1

3mh
2Þ and I3 ¼ 1

2ma
2, so that

M¼ I1Xþ (I3& I1)x3N. We write the angular momentum
relative to a lab-fixed frame X(t) that is connected to the
body-fixed frame x by the relation X(t)¼Q(t)x, with the
rotation matrix Q(t) [ SO (3), so that the body-fixed angular
velocity x¼QT(t)X, and the body-fixed angular momentum
m¼QT(t)M. The evolution of the unit normal to the coin is
given by17

dN

dt
¼ X' N: (1)

If w is the angle between the angular momentum M and N(t)
at time t¼ 0 given by cosðwÞ ¼ Nð0Þ ( bM, where
bM ¼ M=M, M¼ ||M||, and xN¼M=I1, we find that

dN

dt
¼ xN

bM' N: (2)

That is, the normal to the coin sweeps out a cone as it pre-
cesses about the axis bM with the frequency xN, keeping the
angle between the angular momentum vector and the normal
w constant for all time. On the unit sphere, N(t) traces a
circle which contains the “north pole” (z) as shown in Fig.
1(a). The projection of the normal in the up direction z is7

f ðtÞ ¼ NðtÞ ( z ¼ cos aðtÞ ¼ Aþ B cos hðtÞ; (3)

where A¼ cos2w, B¼ sin2w and h(t) =xNt.

B. Heads, sides or tails?

When such a coin falls onto a substrate without bouncing,
its normal vector N(t) at that instant determines whether the
coin lands on its heads, sides, or tails, depending on the dif-
ference between the dynamical angle af¼ a(tf)¼ cos&1(N(tf)

(z) given by Eq. (3) and the angle h0 ¼ cos&1ðn=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
Þ

which the diagonal to the coin makes with the normal [see
Fig. 1(b)]. The time of flight, tf, can be found by solving
Newton’s equations for the center of mass of the coin,

d2zðtÞ
dt2

¼ &g; zð0Þ ¼
ffiffiffi
3

p

2
a;

dzð0Þ
dt

¼ u; (4)

where the particular choice of z(0) simplifies some of the
subsequent calculations. If the coin is caught at height z¼ 0,
then tf is the smallest positive root of the equation [see Fig.
1(b)],

zðtf Þ & a sin aðtf Þ ¼ 0; (5)

and the criteria for landing on heads, sides, and tails are,
respectively, given by

0 ) af ) h0; heads (6a)
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h0 < af ) p& h0; sides (6b)

p& h0 < af ) p; tails; (6c)

which divides the surface of the unit sphere into three zones:
a polar spherical cap for heads, a middle equatorial zone for
sides, and another polar spherical cap for tails as shown in
Fig. 1(a).

Problem 1. Instead of a coin, suppose we toss a book into
the air. In this case the principal moments of the book, a rec-
tangular prism, are all different (I3> I2> I1, non axisymmet-
ric), and hence Eq. (2) does not apply, and we have to resort
to Euler’s equations. At time t¼ 0 the book is flipped with
angular velocity x(0)¼ (0, 0, x0), where x0 * 1. Show that
x3(t) is approximately constant throughout the motion, and
that in this case x1(t) and x2(t) are bounded and oscillate
with frequency C given by

C2 ¼ ðI3 & I1ÞðI3 & I2Þ
I1I2

x2
0: (7)

If we start off with x(0)¼ (0, x0, 0), where x0 * 1, then
x1(t) and x3(t) do not remain small. Analyze this case. The
axisymmetry of the coin provides a great deal of simplifica-
tion. For a polyhedral dice toss, we have to track the vertical
velocity, the angular velocity vector X, and the evolution of
the body-fixed frame x, which makes the problem more com-
plicated, but worthy of study.

III. DYNAMICS, PROBABILITY, AND GEOMETRY

A. The general case

To link the physics of spin and precession to probability,
we consider the phase space of initial conditions as shown in
Fig. 3. Because coins are usually flipped vigorously, we
might imagine that the angle associated with the spin is uni-
formly distributed. This assumption does hold as shown by
Kemperman and Engel,3 who proved that for vigorously
flipped coins, that is, xNu=g * 1, where xN is the preces-
sional frequency as defined previously and u is the magni-
tude of the upward velocity, the quantity hf =xNtf, modulo
2p, approaches a uniform distribution on the interval [0, 2p).
Because the function f(h) in Eq. (3) is symmetric about h¼ p
and monotonically decreasing on (0, p), it follows that there

is a unique value of h1 in (0, p) that defines the landing con-
dition f(h1)¼ cos af¼AþB cos h1¼ cos h0, where A¼ cos2

w and B¼ sin2 w. Thus, the probability of heads, P(heads),
given by the uniform measure of the set {h: f(h)> cos h0}, is

PðheadsÞ ¼ h1=p: (8)

We can now calculate the full probability distribution for a
coin with arbitrary aspect ratio n¼ h=D, that is, n [ [0, 1),
and arbitrary angular momentum vector M, that is, w [
[0, p]. Because A&B¼ cos2 w& sin2 w¼ cos(2w),
P(heads)¼ 1 when 1 + A&B> cos h0 so that w 2 0; h0=2½ Þ
[ p& h0=2; pð -, and the normal to the coin precesses about
the angular momentum vector making an angle in the range
(0, w) relative to the vertical axis. Similarly if cos h0
+ A&B +& cos h0, that is, w 2 h0=2; p=2& h0=2½ Þ [ p=2ð
þh0=2; p& h0=2-, the coin will only land on heads or sides,
and if& cos h0>A&B +& 1, that is, w 2 p=2& h0=2; p=2½
þh0=2-, the coin can land on heads, sides, or tails. A geo-
metrical way of understanding this result follows by track-
ing the trajectory of the tip of the unit normal vector N(t),
which traces three possible distinct classes of circles: a
circle that lies entirely in the polar heads zone, a circle that
lies in the polar-equatorial heads and sides zone, and a circle
that lies in all three zones. We define

h1 ¼ cos&1 cos h0 & cos2w
sin2w

" #
(9)

and

h2 ¼ cos&1 & cos h0 & cos2w
sin2w

" #
; (10)

and obtain the three types of solutions as shown in Table I.

Fig. 1. (a) For a spinning, precessing coin with its normal pointing vertically upward at time t¼ 0, that is, N(0)¼ z, conservation of angular momentum dic-
tates that N(t) sweeps out a (dotted) circle on the unit sphere. (b) If the coin lands without bouncing, the side that faces up is determined by the difference
between the dynamical angle a(tf) and the static angle h0 ¼ cos&1ðn=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
Þ, where n¼ h=2a is the aspect ratio of the coin. Thus, we obtain heads if 0 ) af

) h0, sides if h0< af ) p& h0, and tails if p& h0< af ) p.

Table I. Probabilities of heads, sides, and tails for a coin of arbitrary aspect
ratio n and different values of w.

Range of w P(heads) P(sides) P(tails)

0; h0=2½ Þ [ p& h0=2; pð - 1 0 0

h0=2; p=2& h0=2½ Þ [ p=2þ h0=2; p& h0=2ð - h1=p 1& h1=p 0

[p=2& h0=2, p=2þ h0=2] h1=p (h2& h1)=p 1& h2=p
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In Fig. 2 we plot the probability distribution for landing
on heads, sides, and tails as a function of n and w in the limit
of high spin. These results complement the earlier results,
for the planar flip of a coin of zero thickness, of Keller5

n¼ 0, w¼p=2 and the three-dimensional dynamics of a coin
of zero thickness: the line n¼ 0, w [ [0, p].7 As expected, we
see that vigorously tossed thick coins that start heads-up are
biased to come heads-up because there is a large range for
the initial angle w that favors this outcome.

B. The dynamically fair coin

A dynamically fair coin is one where
P(heads)¼P(sides)¼P(tails)¼ 1=3 (see Table I), so that
h2¼ 2p=3¼ 2h1 and w¼ p=2, cos h0¼ 1=2, and the aspect
ratio of the coin n ¼ 1=

ffiffiffi
3

p
, in contrast with the condition for

a geometrically fair coin, where n ¼ 1=2
ffiffiffi
2

p
.14 Only for this

unique combination of coin geometry and orientation of the
angular momentum vector {n, w}, does the trajectory of the
unit normal vector N(t) transverse a great circle containing
the meridian (line of longitude) on the unit sphere with equal
length of the trajectory in the heads, sides, and tails regions.
This point is the only one in the phase space of {n, w} for
which there are equal probabilities for heads, sides, and tails
in the dynamical sense. Thus, we can only obtain a fair result
when tossing a thick coin under the “Keller flip” condition:
coin starts heads up with w¼ p=2.

For n ¼ 1=
ffiffiffi
3

p
, we find that the coin always lands heads

up when 1 + A&B> 1=2; that is, w 2 0; p=6½ Þ [ 5p=6; pð -.
The coin only lands on either heads or sides when 1=2
+ A&B +& 1=2; that is, w 2 p=6; p=3½ Þ [ 2p=3; 5p=6ð -.
The coin can land on heads, sides, or tails
when& 1=2>A&B +& 1; that is, w [ [p=3, 2p=3]. Thus,
we have the following three cases:

PðheadsÞ ¼ 1; PðsidesÞ ¼ PðtailsÞ ¼ 0;

w 2 ½0; p=6Þ [ ð5p=6; p-; (11a)

PðheadsÞ ¼ h1
p
; PðsidesÞ ¼ p& h1

p
; PðtailsÞ ¼ 0;

w 2 ½p=6; p=3Þ [ ð2p=3; 5p=6-; (11b)

PðheadsÞ ¼ h1
p
; PðsidesÞ ¼ h2 & h1

p
; PðtailsÞ ¼ p& h2

p
;

w 2 ½p=3; 2p=3-: (11c)

The probability outcomes P(heads), P(sides), and P(tails) as
a function of w, the angle between the normal of the coin to
the angular momentum vector, are plotted in Fig. 2.

C. Phase space of pre-images of a thick tossed coin

To understand how the probability distribution of initial
conditions evolves through the flow and leads to random
outcomes, we consider how the phase space of possibil-
ities, that is, heads, sides, or tails, is mapped onto the ini-
tial conditions, that is, the pre-images, which lead to
these different outcomes. In Fig. 3, we show the pre-
images of heads, sides, and tails of a dynamically fair
coin, that is, one tossed upward with w¼ p=2 and
h=D ¼ 1=

ffiffiffi
3

p
. After the coin has landed (without bounc-

ing), it has rotated xNtf times. Depending on the number
of revolutions n, where n is an integer, the coin lands on
its head if 2np6 h0¼ 2np6 p=3¼xNtf and lands on its
tail if 2(nþ 1)p6 p=3¼xNtf; otherwise the coin lands on
its sides. Thus the phase space (xN, tf) may be decom-
posed into the regions shown in Fig. 3 with boundaries of
the regions given by the hyperbolae,

Fig. 2. Probability distribution of landing on heads, sides, and tails as a function of the angle w between the angular momentum vector M and the normal to
the coin N, defined by cosw ¼ Nð0Þ ( bM and the aspect ratio of the coin n¼ h=D. (a) P (heads) as a function of n and w, (b) P (sides), and (c) P (tails). (d) A
section through the figures for n ¼ 1=

ffiffiffi
3

p
shows the probability distribution of landing on heads (solid curve), sides (small dashed), and tails (long dashed) as a

function of w. Only for w¼p=2 is the coin dynamically fair so that it is equally likely to land with heads, tails, or sides up when tossed vigorously with
xNtf * 1.
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xN ¼ 2n6
1

3

" #
pg
2u

n ¼ 0; 1; 2;…ðheadsÞ; (12a)

xN ¼ ð2nþ 1Þ6 1

3

" #
pg
2u

; n ¼ 0; 1; 2;…ðtailsÞ: (12b)

On the axis xN¼ 0, the coin remains heads up throughout
the toss, and therefore this axis and the adjacent strip lie in
H, the pre-image of heads as shown in Fig. 3. The next strip
lies in S, the pre-images of sides; the next strip lies in T, the
pre-image of tails; the next strip lies in S, and the sequence
H, S, T, S repeats itself. We see that the hyperbolae striate
phase space even more finely as the spin xN and the scaled
velocity u=g increase. Each region of H and T has equal area
while S is half as large but occurs twice as often. As we shift
a finite area disk in this phase space to infinity, we find that
H, S, and T occupy fixed and equal areas of the disk, so that
the coin toss becomes dynamically fair only asymptotically.

D. A geometrical view

As we have seen, the basic difference between the von
Neumann flip and the Keller flip can be characterized in
terms of the geometry of allowable orientations. A minimal
view of von-Neumann’s argument is shown in Fig. 4(a).
Given the assumption of a uniform distribution of all possi-
ble orientations, the probability of landing on heads and tails
is given by the ratio of the solid angle subtended by heads
(or tails) Xs to the total solid angle of a unit sphere, that is,
Xs=4p, and that of landing on a side is 1& 2Xs=4p. There-
fore, a fair 3-sided coin must be such that Xs=4p¼ 1=3. If
we use the usual spherical coordinate system, we can calcu-
late Xs¼ 2p(1& cos h), where h is the half-angle subtended
by the face. If we equate the two relations, we find that cos
h¼ 1=3. By definition, cos h ¼ n=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
, so that the as-

pect ratio of the coin is n ¼ 1=2
ffiffiffi
2

p
.

In contrast, the constraint of constant angular momentum
leads us to consider the Keller flip, the only truly unbiased

flip. In this case we consider a projection of a cross-section
of the coin onto a circumscribed circle, as shown in Fig. 4.
The probability of landing on a particular face (or side) is
now the ratio of the arc subtended by the face (or side) di-
vided by the entire circle (2p). Thus, P(heads)¼ h0=p,
P(tails)¼ h0=p, and P(sides)¼ 1&P(heads)&P(tails)¼ 1
& 2h0=p, so that for a fair 3-sided coin, h0¼p=3, and thus
the aspect ratio of the coin n ¼ 1=

ffiffiffi
3

p
.

Thus, we see another example of how Bertrand’s paradox
arises naturally. Depending on the assumptions of the mech-
anism (or equivalently, the implied symmetry and invari-
ance) which produces the random variable, the probabilities
are ill-defined and thus lead to different answers for the as-
pect ratio of a fair coin.

IV. EXPERIMENTS

To test our theoretical results, we conducted a series of
simple tabletop experiments. To make thick coins, we glued
U.S. quarters, of diameter 24 mm and thickness 1.75 mm, to-
gether to form an N-coin of different aspect ratios, for exam-
ple, a 3-coin is formed by gluing three U.S. quarters
together, and tossed them by hand with w.p=2 and starting
heads up, onto a highly inelastic surface, such as a pan of
rice covered by a thin film of plastic. For thicker coins, we
cut cylindrical pieces of an aluminum rod of diameter 25
mm. Each coin was vigorously tossed (ux=g + 20) 100
times starting with heads up, and the experimentally deter-
mined frequency of sides is plotted (as dots) in Fig. 5. The
sum of squared errors for the geometrical case (0.20) is
significantly larger than for the dynamical case (0.01). Our
experimental results are in good agreement with the predic-
tions of the dynamical theory and suggest a simple criterion
for the aspect ratio of designer coins with a given bias to
land on a side or a face.
It is useful to compare these experimental results with

both geometrically and dynamically fair coins in the limit of
thin and thick coins. For arbitrary aspect ratio n, the
symmetry-based geometrical view implies that the probabil-
ity of landing on sides is given by

Fig. 3. Phase space of possibilities for a thick coin. For different aspect
ratios n, hyperbolae separate the phase space into regions of heads (white
regions), sides (black regions), and tails (stripes regions) as defined in Eq.
(12). The case shown corresponds to the fair coin when n ¼ 1=

ffiffiffi
3

p
and

w¼p=2, and shows that sides appear twice as often, but with half the area
associated with heads and tails. Far from the origin, corresponding to arbitra-
rily large values of u and x and a vigorously spun coin, any disk of arbitra-
rily small area will contain equal proportions of heads, sides, and tails
regions, because the hyperbolae become more closely spaced, and
approaches the limiting case of a fair three-sided coin.

Fig. 4. (a) The purely symmetry-based argument of von Neumann,14 con-
nects probability to the (assumed) uniform distribution of orientations in
space, so that the probability of heads is the ratio of the solid angle Xs sub-
tended by the head of the coin to the total solid angle of a unit sphere, that
is, Xs=4p. For a fair coin with an equal probability of landing on its head,
tail, or side, Xs¼ 4p=3 and n ¼ 1=2

ffiffiffi
2

p
. (b) For the dynamical argument

associated with the Keller flip (the only case where for a vigorous flip, it is
possible to eliminate the bias based on initial conditions), the probability of
heads is the ratio of the arc length s subtended by heads and the circumfer-
ence of the circle, that is, s=(2pr)¼ h0=p, so that for a fair three-sided coin,
h0¼p=3 and n ¼ 1=

ffiffiffi
3

p
.
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PGðsidesÞ¼ 1&2PðheadsÞ¼ 1&1

2

ðh0

0

sin h dh

¼ cos h0 ¼
nffiffiffiffiffiffiffiffiffiffiffiffi
1þn2

p : (13)

A geometrical fair coin has n ¼ 1=2
ffiffiffi
2

p
, which implies that

PG(sides)¼ 1=3, and a dynamical fair coin (w¼ p=2) has
n ¼ 1=

ffiffiffi
3

p
, which under the geometrical prediction, gives a

probability of PG(sides)¼ 1=2.
In contrast, using the dynamical view that respects conser-

vation of angular momentum, the probability of landing on a
side is given by

PDðsidesÞ ¼
p& 2h0

p
¼ 1& 2

p
cos&1 nffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n2
p

 !

: (14)

Therefore n ¼ 1=
ffiffiffi
3

p
, PD(sides)¼ 1=3, and for n ¼ 1=2

ffiffiffi
2

p
,

PD(sides)¼ 0.216. In the small n limit we find

PGðsidesÞ ¼ n& n3

2
þ Oðn4Þ (15a)

and

PDðsidesÞ ¼
2

p
n& 2

3p
n3 þ Oðn5Þ: (15b)

In contrast, in the large n limit, we find

PGðsidesÞ ¼ 1& 1

2n2
þ O

1

n4

" #
(16a)

and

PDðsidesÞ ¼ 1& 2

pn
þ O

1

n2

" #
: (16b)

Although a coin with vanishing thickness has vanishing
probability of landing on its side and an infinitely long coin
will always land on its sides, we find that PG(sides)
approaches the asymptotes at a much faster rate than
PD(sides) as shown in Fig. 5(a).

Problem 2. Use Eq. (14) and write a Monte Carlo program
that can find the dynamical probability of landing on the
sides of a thick coin for a given n. Generalize your program
to consider a coin with arbitrary angular momentum vector.
For the case for which w has a normal distribution with
mean p=2 and variance 0.1, shows that this distribution
results in a curve that is slightly displaced above the (dashed)
dynamical curve in Fig. 5(a).

V. DISCUSSION

By adding the thickness dimension of a coin, we have
expanded the phase space of possibilities of a coin toss land-
ing on an inelastic substrate and derived simple expressions
for the probability of landing on a side as a function of the
aspect ratio of the coin and its initial orientation relative to
its angular momentum vector. Our simple model allowed us
to derive the conditions for a dynamically fair 3-sided coin:
we must toss a coin of aspect ratio h=D ¼ 1=

ffiffiffi
3

p
with its

angular momentum lying in its plane. that is, w¼ p=2, just
as for a coin of zero thickness.7 We also saw how the coin
toss is a natural example of Bertrand’s paradox and its reso-
lution using physical principles (embodied in terms of sym-
metry and invariance) which have a direct geometrical
interpretation.
We conclude with a brief remark on the role of the distri-

bution of w, the angular variable that describes the relative
orientation of the coin normal to the angular momentum vec-
tor. As w deviates from p=2, the probability of sides is no
longer 1=3. Then P(i), where i¼ heads, sides, or tails is
given by

PðiÞ ¼
ðp

0

PðijwÞPðwÞdw; (17)

where the conditional probability P(i|w) is now given by Eq.
(11). In Table II we show the affect of three symmetrical dis-
tributions for P(w), w [ [0, p]. We consider P(w)¼ 1=p;
P(w)¼ (1& cos 2w)=p, and P wð Þ ¼ aexp& w&p=2ð Þ2 with
a¼ 0.58. In each case we find that the coin is biased toward
heads (the initial condition). This bias suggests learning
strategies for novices to become experts and approach the

Fig. 5. (a) Probability of sides for a vigorously spun coin (ux=g + 20) as a function of the aspect ratio n. The dots correspond to our experiments and denote
the frequency of sides for 100 flips. The solid and dashed lines correspond to the geometrical and dynamical definitions in the text. (b) The probability of a
three-coin landing on sides on a highly inelastic surface made of rice grains. (c) A dynamically fair three-sided coin composed of stacking eight U.S. quarters,
with an aspect ratio n " 0.58.
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mythical Rosencrantz and the real Diaconis who are able to
exploit these deviations to effect long streaks of heads.18
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