
Modification of Coulomb’s law in closed spaces
Pouria Pedrama!

Plasma Physics Research Center, Science and Research Campus, Islamic Azad University,
Tehran 1477893855, Iran

!Received 2 September 2009; accepted 17 November 2009"

We obtain a modified version of Coulomb’s law in two- and three-dimensional closed spaces. We
demonstrate that in a closed space the total electric charge must be zero. We also discuss the relation
between total charge neutrality of an isotropic and homogeneous universe to whether or not its
spatial sector is closed. © 2010 American Association of Physics Teachers.
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I. INTRODUCTION

One of the fundamental forces of nature is the electromag-
netic force between charged particles. The interaction be-
tween charged particles in flat spaces is governed by Cou-
lomb’s law in two and three dimensions1,2

E =
F
q0

=
q

2!"0r
r̂ !two dimensions" , !1"

E =
q

4!"0r2 r̂ !three dimensions" . !2"

Here, E is the electric force per unit charge and r̂ is the unit
vector directed from the first charge q to the second charge
q0 !see Fig. 1".

There are two basic assumptions that are valid in flat
spaces for electrostatic forces. One is the superposition prin-
ciple, which states that at any point in space, the total electric
field of a group of charges equals the vector sum of the
electric fields due to the individual charges. The other as-
sumption in flat space is the absence of any restriction on the
number of positive and negative charges; that is, we may
have an arbitrary number of positive and negative charges
with zero or nonzero total value. As we shall see, in curved
spaces the correctness of the former is not clear and the latter
assumption is not valid.3

The first attempt to solve electrostatic problems in curved
space was done by Fermi in 1921.4 In this paper, Fermi dis-
cussed the correction to the electric field of a single point
charge held at rest within a gravitational field to first order in
the gravitational acceleration. A few years later, Whittaker5

solved this problem exactly both in the homogeneous gravi-
tational field and in the Schwarzschild geometry cases. These
efforts were further developed by Copson.6

In this paper, we obtain the modified form of Coulomb’s
law in two- and three-dimensional closed curved spaces. We
show that in the vicinity of charges where the effect of cur-
vature is negligible, we recover Coulomb’s law. The geo-
metrical interpretation of this result is that we can always
find a tangent flat space for any point on a curved space. We
also demonstrate the failure of the second assumption in
these spaces. Finally, we discuss the charge neutrality of a
closed isotropic and homogeneous universe.

II. MATHEMATICAL PRELIMINARIES

Because Coulomb’s law is valid only in flat spaces, we
outline some important properties of these spaces. In a flat

space there always exists a !Cartesian" coordinate system
where the distance between two infinitesimally close points
can be written as

ds2 = %
i=1

d

!dxi"2, !3"

where xi are the coordinates, d is the dimension of the space,
and ds2 is the line element. We can define the metric of the
space as a second-order covariant tensor gij, namely,

ds2 = %
i,j

gijdxidxj . !4"

Thus, in flat spaces, it is always possible to find a coordinate
system in which the metric is diagonal with constant ele-
ments

gij = # $ij , !5"

where $ij is the Kronecker delta defined as

$ij = &1, i = j

0, i " j .
' !6"

In particular, Euclidean space corresponds to g11=g22=g33
=g44=1, and Lorentzian space corresponds to g11=g22=g33
=1, g44=−1. A well-known example is the three-dimensional
spherical coordinate system specified by r, %, &, and the line
element

ds2 = dr2 + r2d%2 + r2 sin2 %d&2, !7"

or its equivalent metric tensor in the matrix form

#gij$ = (1 0 0

0 r2 0

0 0 r2 sin2 %
) . !8"

Using a suitable choice of the coordinate transformation

z = r cos % ,

x = r sin % cos & ,

y = r sin % sin & , !9"

we obtain the diagonal form of the line element

ds2 = dx2 + dy2 + dz2, !10"

and the metric tensor
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#gij$ = (1 0 0

0 1 0

0 0 1
) . !11"

We now consider the surface of a 2-sphere as a two-
dimensional closed curved space !see Fig. 2". The distance
between two infinitesimally close points on this hypersurface
is

ds2 = R2d%2 + R2 sin2 %d&2, !12"

where R is the radius of the sphere, which takes a constant
value. For this case, it is not possible to find a proper coor-
dinate transformation to diagonalize the metric tensor with
constant elements. In other words, we cannot find a new set
of variables u!% ,&" and v!% ,&" so that the line element takes
the simple form ds2=du2+dv2.

To be more precise, let us review the tensorial properties
of the 2-sphere. We will show that because all components of
the curvature tensor are nonzero, the metric tensor of a
2-sphere is not Euclidean.13 The covariant metric tensor of
the surface of a sphere can be written in the matrix form !12"
as

#gij$ = R2*1 0

0 sin2 %
+ , !13"

where i , j are elements of ,% ,&-. We have the following form
for the contravariant metric tensor

#gij$ = R−2*1 0

0 !sin %"−2+ . !14"

The Christoffel symbols of the first kind are defined as13

'i,jk = 1
2 !#kgij + # jgki − #igjk" . !15"

By substituting Eq. !13" into Eq. !15", we have '%,%%=0,
'%,%&='%,&%=0, '%,&&=−R2 sin % cos %, '&,%%=0, '&,%&
='&,&%=+R2 sin % cos %, and '&,&&=0. The Christoffel sym-
bols of the second kind are also defined as

' jk
i = gil'l,jk. !16"

Thus, we have '%%
% =0, '%&

% ='&%
% =0, '&&

% =−sin % cos %, '%%
&

=0, '%&
& ='&%

& =+!sin %"−1cos %, and '&&
& =0.

We can use the Christoffel symbols to define the Riemann
curvature tensor

R jkl
i = #k'lj

i − #l'kj
i + 'lj

m'km
i − ' jk

m'lm
i . !17"

The Riemann curvature tensor in d-dimensional space has d4

components. These components are not all independent, and
the number of independent components is given by

n =
d2!d2 − 1"

12
, !18"

which is equal to 1 for a 2-sphere !d=2". We can also define
the Ricci tensor

Rij = Rijk
k = gklRlijk !19"

and the Ricci scalar

R = gijRij = gijglkRkijl, !20"

where the former is a symmetric tensor and the latter is pro-
portional to the Gauss curvature. The only independent com-
ponent of the Riemann curvature tensor for our case is
R%&%&, which by Eq. !17" is

R%&%& = − 1
2#%#%g&& + g&&!'%&

& "2 = !R sin %"2. !21"

Thus, we can obtain the Gauss curvature of the 2-sphere
given by Eq. !20",

R
2

= g%%g&&R%&%& − g%&g%&R%&%&

= !g%%g&& − g%&g%&"R%&%& !22a"

= .gij.R%&%& =
R%&%&

g
=

1
R2 , !22b"

which is equal to the square inverse of its radius.

III. ELECTRIC FIELD ON A TWO-DIMENSIONAL
SPHERICAL SPACE

We consider a 2-sphere as a simple two-dimensional
closed curved space !see Fig. 2". The points on this space
satisfy

x2 + y2 + z2 = R2. !23"

Now, put a positive point charge q at its north pole. We
assume that the electric fields exist only on the sphere’s sur-
face. In this situation, the field’s lines come out from the
north pole and after passing the equator meet each other at

!"

!

!#

Fig. 1. The electric force between two point charges separated by a distance
r.

!

"
Fig. 2. The electric field on a 2-sphere in the presence of positive and
negative point charges located at the north and south poles, respectively.
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the south pole. The intersection point of the ingoing field
lines corresponds to the presence of a negative charge. Thus,
we will observe a negative point charge −q at the south pole
of the sphere. The presence of the negative charge shows that
there is a one to one correspondence between positive and
negative charges in this space. Therefore, the total charge on
the sphere will be zero

%
i

qi = 0. !24"

To obtain the electric field, we use Gauss’s law in two di-
mensions

/ E · dS =
q

"0
, !25"

where the integration is over a one-dimensional closed curve.
For instance, consider the upper dashed line in Fig. 2 as the
integration contour. Because this path encloses both q and
−q, it is not possible to relate the electric field to one charge
only. So the resulting electric field can be decomposed into
two components, which are related to each charge. For this
case, the integration contour is a circle with circumference
2!R sin % !see Fig. 2". The electric field on the sphere is

E =
q

2!"0R sin %
!̂ , !26"

where % is the usual polar coordinate and R is the radius of
the sphere. If we define r as the distance from the north pole
on the sphere, we can rewrite the electric field in terms of r,

E =
q

2!"0R sin!r/R"
r̂ . !27"

For a large value of R or in the vicinity of the positive charge
!r(R", Eq. !27" reduces to the flat two-dimensional form of
Eq. !1",

E 0
q

2!"0r
r̂ . !28"

Moreover, because the negative charge −q is located at in-
finity in this limit, its effect is negligible in the vicinity of the
positive charge.

Note that because the integration contour contains both
positive and negative charges, it may seem that the superpo-
sition law fails in curved spaces. But, because Maxwell’s
equations are linear in any space-time, this conclusion is not
true. The reason why the superposition principle seems to
fail is related to the topology of the space: A general solution
to Maxwell’s equation will not be single-valued in a closed
space, and additional conditions must be imposed to ensure
that the electric field is globally well-defined. These addi-
tional conditions require the existence of an additional
charge and seem to imply a failure of the superposition prin-
ciple. However, the superposition principle is not violated
because the correct solution is a sum E1+E2+E3, where E1
is the field of the positive charge, E2 is the field of the nega-
tive charge, and E3 is a solution to the homogeneous equa-
tion !Laplace’s equation" that must be added to account for
the topological conditions.

IV. ELECTRIC FIELD ON A THREE-DIMENSIONAL
SPHERICAL SPACE

To have a more realistic model, we consider a 3-sphere,
which is a set of points equidistant from a fixed central point
in four-dimensional Euclidean space.7,8 The points on this
three-dimensional hypersurface satisfy the relation

x2 + y2 + z2 + )2 = R2 !29"

and can be expressed by z=R sin * cos %,
x=R sin * sin % cos &, y=R sin * sin % sin &, R is the radius
of the 3-sphere, * is the extra polar coordinate, and
)=R cos * is the fourth coordinate. Now, consider a positive
charge located at the north pole of the 3-sphere. We require
that the electric field is confined into the three-dimensional
hypersurface. Thus, the electric field cannot propagate out-
side the 3-sphere. By using the constraint equation !29", we
can rewrite the line element of this space as

ds2 = dx2 + dy2 + dz2 +
!xdx + ydy + zdz"2

R2 − !x2 + y2 + z2"
. !30"

If we use the corresponding spherical coordinates *, %, and &
instead of the coordinates x, y, and z, the line element takes
the form

ds2 = R2#d*2 + sin2 *!d%2 + sin2 %d&2"$ . !31"

To obtain the electric field, we need to use Gauss’s law !25"
over a closed two-dimensional surface with constant r !or *"
with the line element

ds2 = R2 sin2 *!d%2 + sin2 %d&2" , !32"

which is similar to the case of the 2-sphere !R→R sin *".
The area of this hypersurface is equal to S=4!R2 sin2 *. The
use of Gauss’s law results in the following form for the elec-
tric field

E =
q

4!"0R2 sin2 *
"̂ . !33"

Equation !33" reduces to Coulomb’s law !2" in the vicinity of
the north pole !r(R". To show this result, we rewrite the line
element !30" in terms of r!, %, and &

ds2 =
dr!2

1 − r!2/R2 + r!2!d%2 + sin2 %d&2" !34"

=R2* dr"2

1 − r"2 + r"2!d%2 + sin2 %d&2"+ , !35"

where r!2=x2+y2+z2 and r"=r! /R. Moreover, we can obtain
the relation between r! and the radius of a sphere on this
hypersurface

r = 1
0

r! dr!
21 − r!2/R2

= R sin−1 r!/R = R* , !36"

which results in the electric field

E =
q

4!"0R2 sin23 r

R
4 r̂ !37"

or
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E 0
q

4!"0r2 r̂ !38"

in the vicinity of the positive charge !r(R". In other words,
we can recover the usual form of the electrostatic forces in
the regions where the effect of the curvature is negligible.
This result also shows that, similar to the two-dimensional
case, the total charge of the 3-sphere should be zero. In Fig.
3 we have plotted Coulomb’s law and its modified version on
the 3-sphere for various values of R. As it can be seen, the
correspondence between the two increases as R increases.

In reality, we live in a four-dimensional curved space-time
with a matter distribution on it. Following the theory of gen-

eral relativity, the curvature of the universe comes from its
mass and energy. Any massive object distorts its surrounding
space-time. If we assume that the universe is homogeneous
and isotropic, space-time can be expressed by the
Friedmann–Robertson–Walker metric as9–11

ds2 = − dt2 + R2!t"* dr"2

1 − kr"2 + r"2!d%2 + sin2 %d&2"+ ,

!39"

where R!t" is the scale factor and k=+1,0 ,−1 corresponds to
a closed, flat, or open universe, respectively. For a closed
universe !k=1", the spatial section of the metric has the form
Eq. !35", and thus can be considered as a 3-sphere imbedded
in four-dimensional space-time, where the scale factor R!t"
plays the role of its radius.7,9 Observations of our Universe
suggest that the spatial section of the universe is flat at the
present time !k=0". What would happen if we had a universe
with positive curvature !k=1"? In early times, in the interval
between a millisecond to a second after the Big Bang,12 the
radius of the universe was very small and the effect of the
curvature was considerable. At the end of the radiation era,
when the temperature of the universe decreased, charged par-
ticles could be created. For a closed universe, the curvature
would allow the charged particles to be created in pairs. Con-
sequently, the universe at large scales would be neutral.
Thus, a closed universe results in the charge neutrality of the
universe, but the inverse statement is not necessarily true.
Hence, although observations show that our Universe is neu-
tral at large scales, the flatness of our Universe indicates that
the neutrality is only a coincidence from this point of view.
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Fig. 3. The electric field on a 3-sphere #Eq. !33"$ !solid line" and Coulomb’s
law #Eq. !2"$ !dashed line" for !a" R=1 /2, !b" R=1, and !c" R=3 with
q / !4!"0"=1.
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