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Evolutionary game theory is designed to capture the essentials of the characteristic interactions
among individuals. Its most prominent application is the quest for the origins and evolution of
cooperation. The effects of population structures on the performance of behavioral strategies
became apparent only in recent years and marks the advent of an intriguing link between apparently
unrelated disciplines. Evolutionary game theory in structured populations reveals critical phase
transitions that fall into the universality class of directed percolation on square lattices and
mean-field-type transitions on regular small world networks and random regular graphs. We employ
the prisoner’s dilemma to discuss new insights gained in behavioral ecology using methods from
physics. © 2005 American Association of Physics Teachers.
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I. INTRODUCTION

The evolution of cooperation is a fundamental problem in
biology because unselfish, altruistic actions apparently con-
tradict Darwinian selection. Nevertheless, cooperation is
abundant in nature ranging from microbial interactions1 to
human behavior.2 In particular, cooperation has given rise to
major transitions in the history of life.3 Game theory4 to-
gether with its extensions to an evolutionary context5 has
become an invaluable tool to address the evolution of coop-
eration. The most prominent mechanisms of cooperation are
direct6,7 and indirect8–10 reciprocity, voluntary
interactions,11–13 and spatial structure.14–19 All these mecha-
nisms have one thing in common: they hinge on different
forms of assortative !that is, nonrandom or conditional" in-
teractions. Such assortment can be actively implemented
through discriminating strategic behavior of the interacting
individuals or passively by imposing environmental con-
straints such as local interactions in spatially extended sys-
tems. The dynamics that results from constraining interac-
tions to nearest neighbors suggests new and interesting and
intriguing links to physics and, in particular, to statistical
mechanics.
Investigations of spatially extended systems have a long

tradition in condensed matter physics. Among the most im-
portant features of spatially extended systems are the emer-
gence of phase transitions. Their analysis can be traced back
to the Ising model.20 The application of methods developed
in statistical mechanics to interactions in spatially structured
populations has turned out to be very fruitful.18 Interesting
parallels between nonequilibrium phase transitions and spa-
tial evolutionary game theory have added another dimension
to the concept of universality classes.
In game theory, the prisoner’s dilemma7 is a paradigm for

cooperation. The prisoner’s dilemma describes the pairwise
interactions of individuals with two behavioral options: the
two players must simultaneously decide whether to cooper-
ate or to defect. Cooperation yields a benefit b to the co-
player at a cost c (b!c). Thus, for mutual cooperation both

players receive the reward R"b#c , but only the punish-
ment P"0 for mutual defection. If one player defects and
the other cooperates, the traitor receives the temptation
T"b , while the cooperator is left with the sucker’s payoff
S"#c . These payoffs satisfy the characteristic payoff rank-
ing of the prisoner’s dilemma: T!R!P!S . !In repeated
interactions it is additionally required that 2R!T$S such
that mutual cooperation has the highest return for the com-
munity." It is easy to see that defection is the better choice
irrespective of the opponent’s decision. Thus, ultimately in-
dividuals end up with P instead of the preferable reward
R—hence the dilemma. This unfortunate outcome represents
the result of classical game theory and is called a Nash equi-
librium because none of the players can increase their payoff
by unilaterally changing the strategy.21
In evolutionary game theory an infinite population is con-

sidered with a fraction % cooperators and 1#% defectors. In
the mean-field approximation, that is, in well-mixed popula-
tions where individuals interact randomly, the payoffs
are given by PC"%R$(1#%)S"%b#c and PD"%T
$(1#%)P"%b for cooperators and defectors, respectively.
If we assume that cooperators and defectors are ‘‘spread’’
according to their relative performance, that is, as compared
to the average population payoff P̄"%PC$(1#%)PD
"%(b#c), the dynamics is determined by the replicator
equation:22

%̇"%!PC# P̄ ""%!1#%"!PC#PD". !1"

As time passes, % obviously converges to zero because PD
!PC , that is, cooperators vanish irrespective of their initial
concentration. Thus, both classical and evolutionary game
theory predict the undesired outcome of mutual defection
and economic stalemate, where no one receives any benefits
for the sake of reducing costs.
To overcome this dilemma, we consider spatially struc-

tured populations where individuals interact and compete
only within a limited neighborhood. Such limited local inter-
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actions enable cooperators to form clusters and thus indi-
viduals along the boundary can outweigh their losses against
defectors by gains from interactions within the cluster. Re-
sults for different population structures and for voluntary
participation in the prisoner’s dilemma are discussed and re-
lated to condensed matter physics.

II. SPATIALLY STRUCTURED POPULATIONS

Spatially structured populations are modeled by confining
players to lattice sites or, more generally, to the nodes of an
arbitrary graph. The performance Px of a player at site x is
determined by the payoffs accumulated in its interactions
with its neighbors. Occasionally a player at site x reassesses
its strategy by comparing its performance to a randomly se-
lected neighbor at site y. There are different approaches for
defining the update rule of player x. For example, we could
assume that player x adopts the strategy of y with a probabil-
ity proportional to the difference in performance Py#Px pro-
vided that it is positive. This approach recovers Eq. !1" in the
limit of random interactions !well-mixed populations" or
fully connected graphs. Unfortunately, the fact that worse
performing players are never imitated together with the non-
differentiability when Py#Px"0 results in subtle difficul-
ties. Although the equilibrium frequencies of cooperators and
defectors are hardly affected, this approach affects the per-
formance and the nature of the fluctuations—the signature of
critical phase transitions.
To highlight the links between spatial game theory and

condensed matter physics, we assume a transition probability
given by

W!x←y"" f !Py#Px""#1$exp!#!Py#Px"/&"$#1,
!2"

where & denotes the amount of noise. This update rule states
that the strategy of a better performing player is readily
adopted, whereas it is unlikely !but not impossible" to adopt
the strategies of worse performing players. The parameter &
incorporates the uncertainties in the strategy adoption !origi-
nating in either the variation of payoffs or in mistakes in the
decision making". In the limit &→' all information is lost,
that is, player x is unable to retrieve any information from Py
and switches to the strategy of y by tossing a coin.
At first glance, this update rule seems to be similar to

Glauber dynamics23 for the kinetic Ising model where strat-
egies translate to spin up and down, Py#Px relates to the
change of energy when flipping the spin at x, and & corre-
sponds to the temperature. In Glauber dynamics the probabil-
ity of a single spin flip is determined by the energy difference
between the initial and the flipped states. This transition rule
drives the system toward the equilibrium state for the tem-
perature &. However, the game theoretical approach involves
several important differences. Most importantly, in Glauber
dynamics the energy gain of the pair interaction is shared
between neighboring spins. Consequentially, spin flips that
minimize the local energy also reduce the total energy. This
minimization contrasts with game theoretical agents that at-
tempt to maximize their individual payoff regardless of the
potential losses for the population as a whole. In addition,
players are restrained to adopt the strategies of their neigh-
bors and are incapable of anticipating the resulting payoffs. It
follows that, unlike in Glauber dynamics, strategy changes
!or spin flips" occur only along boundaries which separate
domains of different strategies. Thus, in the absence of spon-

taneous mutations, spatial games always have absorbing
states where all members follow the same strategy.
The spreading of strategies resembles the spreading of in-

fectious diseases as described by contact processes. These
models exhibit !universal" nonequilibrium phase transitions
!into absorbing states". Their general features are reviewed in
Refs. 24 and 25.

A. Square lattices

A spatial arrangement can be approximated by considering
a square lattice with periodic boundary conditions, where
each individual is confined to a lattice site and interacts and
competes only with its four nearest neighbors. Starting from
a random initial configuration, the population is updated in
an asynchronous fashion through sequential updates of ran-
domly drawn players: first, two neighboring sites x and y are
chosen at random and, second, the player at site x adopts the
strategy of the player at y with the probability W(x←y) #see
Eq. !2"$. After an equilibration time the system reaches a
stationary state independent of the initial configuration due
to the stochastic update rules. The stationary state is charac-
terized by the density of strategies obtained by averaging
over a sampling time which was varied from 104 to 106
Monte Carlo steps per site !MCS". In each MCS, every site is
updated once on the average. For simplicity !but without loss
of generality", the payoffs are rescaled such that R"1, T
"1$r , S"#r , and P"0, where r"c/(b#c) denotes the
ratio of the costs of cooperation to the net benefits of coop-
eration.
In contrast to the results for well-mixed populations, co-

operators persist at substantial levels in spatial settings if r is
sufficiently small, that is, the benefits of cooperation are high
compared to the costs !see Fig. 1". Cooperators survive by
forming compact clusters which minimize the exploitation
by defectors. Along the boundary, cooperators can outweigh
their losses against defectors by gains from interactions
within the cluster. A snapshot of a typical lattice configura-
tion illustrates the clusters just below the extinction threshold

Fig. 1. Frequency of cooperators !!" and defectors !!" in the spatial pris-
oner’s dilemma as a function of the cost-to-benefit ratio r . The simulations
were performed on square lattices with periodic boundary conditions and
population sizes ranging from N"4002"1.6%105 to N"106. In the vicin-
ity of the extinction threshold of cooperators larger systems are used to
suppress the undesired effects of diverging fluctuations.
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rc !see Fig. 2". For r!rc cooperators vanish because the
benefits of spatial clustering are no longer sufficient to offset
the losses along the boundary.
In biology, such thresholds are common in the evolution of

cooperative behavior. Probably the first quantitative treat-
ment goes back to W. D. Hamilton’s kin selection theory.26
Cooperation among relatives evolves and is beneficial from a
genetic point of view27 whenever rkin!c/b , that is, the de-
gree of relatedness rkin exceeds the cost-to-benefit ratio of
cooperation. This idea is illustrated by an anecdote attributed
to J. B. S. Haldane28 who apparently claimed that he would
give his life to save more than two drowning siblings or
more than eight drowning cousins. The basis for this calcu-
lation is the fact that the degree of relatedness in humans
!that is, the fraction of genes shared by two individuals" gen-
erally does not exceed 1

2. In the present context, the threshold
rc is considerably smaller than rkin !also note the slightly
different definitions of r and rkin), that is, persistence of
cooperation requires much greater benefits from the coopera-
tive action. One major reason for this significant reduction of
feasible cost-to-benefit ratios r that are capable of maintain-
ing cooperation is that we are considering unrelated and self-
ish individuals.
According to our simulations, near rc the average fraction

of cooperators vanishes as (%)*(rc#r)+ !see Fig. 3" where
rc"0.021 12 (2) and +"0.57 (3) !the figures between pa-
rentheses indicate the statistical uncertainties of the last
digit". In these simulations the linear size of the system is
chosen to be significantly larger than the correlation length
and the average values are determined by averaging over a
sufficiently long sampling time in the stationary state. For
this purpose the linear size increased from L"400 to 1000,
meanwhile the sampling time varied from 104 to 106 MCS
when approaching the threshold rc . Under these conditions
the error bar of the MC data is less than the symbol size in
Fig. 3. In physics, such thresholds rc are usually associated

with phase transitions—and indeed, the transition from per-
sistent levels of cooperation (r&rc) to homogenous states of
defection (r!rc) bears the hallmarks of a critical phase tran-
sition.
On square lattices, cooperators are able to persist by form-

ing clusters !see Fig. 2". Due to stochastic fluctuations these
clusters move in a random fashion. Occasionally, a cluster
splits into two or two clusters, collides, merges, or annihi-
lates and vanishes. Territories governed by defection are only
slowly invaded by clusters of cooperators because of their
diffusivelike motion. For r near rc from below, these features
result in a power law divergence in the correlation length and
the relaxation time, as well as in the fluctuations of the fre-
quency of vanishing cooperators. The exponents of the dif-
ferent power laws characterize universal features of these
nonequilibrium transitions. The extinction of cooperators
falls into the directed percolation universality class.29 Similar
exponents are observed in the two-dimensional contact pro-
cess that describes the spreading of epidemics or rumors,30,31
and in branching-annihilating random walks.32,33

B. Random regular graphs and regular small world
networks

Regular graphs are a special set of network structures
where each individual has the same number of connections/
links to other individuals, that is, each individual has the
same connectivity. The square lattice is an example of a
regular graph. In a random regular graph !RRG" the interac-
tion partners are not limited to the immediate neighborhood
but are randomly drawn from the entire population. Random
regular graphs are good approximations to structured popu-
lations where spatial distances weakly affect interactions.
Small world networks have attracted considerable atten-

tion during the last few years. These networks provide a
natural combination of high local connectedness and a few
long-range connections that result in short average path
lengths between any two nodes, !‘‘six degrees of
separation’’".34 This feature is common to a wide variety of
structures ranging from food webs in ecosystems and ac-

Fig. 2. Typical distribution of cooperators !black" in a sea of defectors
!white" on a square lattice for r"0.0211 and &"0.1, just below the extinc-
tion threshold rc"0.021 12 (2) of cooperators. Note that the distribution is
essentially independent of the initial lattice configuration. However, in finite
systems the frequency of cooperators should not be too low, so as to avoid
accidental extinctions while approaching the stationary state.

Fig. 3. Log-log plot of the average fraction of cooperators % as a function of
the distance to the extinction threshold rc#r . The solid line shows that in
the vicinity of rc , the power law*(rc#r)+ perfectly fits the data with rc
"0.021 12 (2) and +"0.57 (3). The system size was increased as r ap-
proaches rc from N"1.6%105 to N"106.
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quaintance networks in humans to the power grid in North
America and the physical and logical structure of the world
wide web.35,36
Small world networks can be easily generated by starting

with a square lattice and then randomly rewiring a certain
fraction Q of all connections by replacing local links with
global ones37 !see Fig. 4". In the following we restrict our
discussion to regular small world networks !RSW", that is, to
population structures where each individual keeps the same
number of connections. Keeping the connectivity constant
simplifies comparisons and highlights the differences due to
the different spatial arrangement. The parameter Q lets us
tune the structure of the network: for Q"0 we have a square
lattice and in the limit Q→1 we obtain a random regular

graph. For small Q typical regular small world networks are
generated, preserving many short loops of square lattices, but
substantially reducing the average minimal distance between
any two nodes, that is, the number of links along the shortest
path. The underlying population structure has significant ef-
fects on the performance of cooperators as shown in Fig. 5.
Surprisingly, it turns out that cooperators perform signifi-

cantly better on random regular graphs than on square lat-
tices. As expected, the performance of cooperators on regular
small world networks lies between these two extremes. Thus,
the substitution of long-range connections for local ones ac-
tually benefits cooperation. This increase in cooperation is in
contrast with the naive expectation that cooperators would
suffer from weakening local structures and clustering abili-
ties. On the contrary, random regular graphs lead to better
chances for cooperators as compared to regular lattices.
Another important but more subtle difference is the nature

of the extinction of cooperators. On the square lattice coop-
erators vanish according to a power law !see Fig. 3" with the
exponent +"0.57 (3), which is characteristic of all two-
dimensional (d"2) systems. However, for the directed per-
colation universality class, the value of + depends on the
spatial dimension d . Mean-field type transitions (+"1) oc-
cur for d,4 !for details see Refs. 24 and 25" as well as on
Bethe lattices and trees.39 In the limit of large populations
N→' , random regular graphs become locally similar to a
Bethe lattice. On small world networks, the spatial correla-
tions are essentially destroyed by the random long-range
connections. As a consequence, mean-field-type transitions
occur for both random regular graphs and small world net-
works, that is, cooperators vanish linearly with r .
In the absence of spatial structure, that is, in well mixed

populations !mean-field approximation", a discontinuous
transition occurs at rc"0 with full cooperation (%"1) for
r&0 and all out defection (%"0) for r!0. The more sophis-
ticated pair approximation provides an analytically acces-
sible way to determine the corrections from spatial structure
in quenched arrangements. Instead of the equilibrium fre-
quency of strategies, the pair approximation considers the
frequency of strategy pairs !see the Appendix". This im-
proved approach correctly predicts the trends, that is, the
persistence of cooperation for r!0 and suggests a linear
decrease of the frequency of cooperators. However, it is un-
able to adequately describe the formation of small clusters of
cooperators !see, for example, Fig. 2", and therefore it sig-
nificantly overestimates the extinction threshold with rc

pair

"0.290 (1) in contrast to rc&0.021 12 (2) obtained from
the simulations. In addition, the pair approximation is inca-
pable of distinguishing the different population structures be-
cause of their identical connectivity.
The remarkable differences in the results for different spa-

tial structures clearly indicate that cooperation is sensitive to
the topological features of the underlying population struc-
ture. The variation of the results can be further extended by
allowing variations in the numbers of neighbors of each in-
dividual, that is, on diluted lattices with vacant sites40,41 or
on social networks with different types of underlying
structures.42–44

Fig. 4. Different population structures where each player or node maintains
the same number of connections: !a" regular !square" lattice, !b" regular
small world network !RSW", !c" Bethe lattice or tree, and !d" random regu-
lar graph !RRG". Regular small world networks are generated from regular
lattices by randomly rewiring some fraction of connections constrained only
by the requirement that the connectivity must be preserved. If all connec-
tions are replaced, an RRG is obtained. In that sense, !a" and !d" represent
the two extremes of regular small world networks. In the limit N→' . RRG
becomes locally similar to a tree !c".38

Fig. 5. Fraction of cooperators % as a function of r for different population
structures: square lattice !"", random regular graph !$", and regular small
world networks !#" for Q"0.03, &"0.1, and N"1.6%105– 106. For in-
creasing r , the spatial correlations result in a critical transition on the square
lattice !see Fig. 3", whereas on random regular graph and small world net-
works the lack of correlations lead to a linear decrease in cooperation, that
is, a mean-field type transition. The data referring to homogeneous D states
!cooperators go extinct and defectors reach fixation" is omitted. The pair
approximation !solid line" correctly predicts the trend, but significantly over-
estimates the benefits of population structures !see the text and the Appendix
for details".
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III. VOLUNTARY PARTICIPATION

So far we have implicitly assumed compulsory participa-
tion in the prisoner’s dilemma. In many situations, however,
individuals often may drop out of unpromising and risky
social enterprises and instead rely on the perhaps smaller but
at least secure earnings based on their individual efforts. In
the context of human societies, one of the pioneers to study
and discuss characteristics of social interactions in a modern
way was the French philosopher J. J. Rousseau.45 He de-
scribed a hunting party where each participant faced the
choice of dropping out and collecting mushrooms alone or
hunting hares with a partner. An individual might be better
off collecting mushrooms than relying on the efforts of an
undependable partner. However, by doing so individuals for-
feit their chances of catching the larger, more favorable game
but also avoid the risk of facing an empty plate for dinner.
Note that defectors also threaten the success of the common
enterprise but for different reasons: defectors portray oppor-
tunistic participants that attempt to free ride on the efforts of
the community, that is, they are hoping for a free lunch.
In game theoretical terms the payoff of risk-averse loners

is constant Pl"- with P"0&-&R"1, that is, loners are
better off than a pair of defectors, but fare less well than two
cooperators. If one of the two individuals chooses the loner
option, the other individual is forced to act as a loner. The
three strategies of cooperation, defection, and going it alone
implements a rock-scissors-paper-type cyclic dominance: if
participants are likely to cooperate, it pays to defect; how-

ever, if everybody defects, it is better to drop out, and once
the loners have conquered the defector’s threat, the benefits
of cooperation become attractive again.
It turns out that in unstructured, well mixed populations,

cooperative behavior vanishes and invariably the absorbing
homogenous state with all loners occurs #see Fig. !6a"$.46
Although loners provide an escape hatch out of states of

mutual defection, this mechanism is capable of promoting
persistent cooperative behavior only in larger groups of in-
teracting individuals.11 For pairwise interactions, the result-
ing advantage is insufficient and social interactions disap-
pear. The cyclic dominance of the three strategies is reflected
in the heteroclinic cycle !a closed trajectory that contains
fixed points" along the boundary of the simplex S3 !ternary
phase diagram with %D$%C$%L"1). This outcome changes
completely when spatial structure and local clustering are
introduced #see Figs. 6!b"–6!d"$. Although random regular
graphs produce only some transient fluctuations in the strat-
egy concentrations and !usually" continue to relax in a state
of all loners, regular small world networks may lead to per-
sistent periodic oscillations of all three strategies.

A. Square lattices

In Sec. II we demonstrated that for compulsory interac-
tions, cooperative behavior persists in spatially structured
populations provided that the benefits of cooperation are suf-
ficiently high, that is, r&rc . Relaxing the compulsory inter-
actions and allowing for voluntary participation boosts coop-
eration on square lattices. In fact, the loners option enables
cooperators to survive for all r !see Fig. 7", which is in
contrast to the compulsory prisoner’s dilemma where coop-
erators go extinct for r!rc !see, for example, Fig. 1".
Two different dynamical regimes can be identified depend-

ing on r: For r&rc1
(sq) , that is, large benefits and small costs,

loners vanish because they no longer provide a viable alter-
native and the spatial clustering enables cooperators to sur-
vive on their own !see Fig. 2". Interestingly, the dynamics
eliminates the voluntary interactions and restores the com-
pulsory interactions characterizing the traditional prisoner’s

Fig. 6. Sample trajectories of the evolution of the frequencies of coopera-
tors, defectors, and loners in the voluntary prisoner’s dilemma for different
population structures. The boundary of the simplex S3 consists of a hetero-
clinic cycle which reflects the cyclic dominance of the three strategies. !a" In
well-mixed populations the system relaxes into homogenous states of all
loners. !b" For RRG the trajectories spiral outward and eventually end in one
of the three absorbing states, but usually they end in the loner corner as in
!a". !c" Regular small world networks networks (Q"0.03) substantially
change this outcome and reveal an asymptotically stable limit cycle leading
to persistent global oscillations of the three strategies. !d" On square lattices
the system evolves toward a stable stationary state with all three strategies
coexisting #%D"0.229 (1), %C"0.269 (1), and %L"0.502 (1)]. All simu-
lations #!b"–!d"$ were done for the for r"0.4, -"0.3, &"0.1, and N
"106. Note that for these parameters defectors invariably reach fixation
!cooperators go extinct" in the absence of the loners. The simulations in
!b"–!d" have random initial configurations with identical concentrations of
all three strategies !marked by $".

Fig. 7. The average fraction of cooperators !dotted line", defectors !solid
line", and loners !dashed line" as a function of the cost-to-benefit ratio r on
square lattices for -"0.3, &"0.1, and N"1.6%105– 106. For r&rc1

(sq)

"0.016 (1) loners go extinct because cooperators thrive on their own, but
for all other r the three strategies coexist in dynamical equilibrium #see Fig.
6!d".
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dilemma. For more hostile settings for cooperation, that is,
for r!rc1

(sq) , loners are of vital importance and manage to
ensure the persistence of cooperation even under harsh con-
ditions when r→1. In this case all three strategies coexist in
dynamical equilibrium.
The extinction of loners again belongs to the directed per-

colation universality class.47 At first glance this affiliation
might seem surprising because in the previous examples the
absorbing state was a static configuration with all defectors,
but here coexisting cooperators and defectors form a fluctu-
ating background. Theory supports the idea that !on large
length scales" the characteristic features of directed percola-
tion transitions remain unaffected by temporal fluctuations of
the background.25
Loners survive by relentlessly invading adjacent territories

occupied by defectors while being diminished by succeeding
cooperators. Consequently, loners die out once the defector’s
density becomes too low for sufficiently small r . For higher
r , loners thrive on defectors, but are kept in check by coop-
erators as dictated by the cyclic dominance of the three strat-
egies. The cyclic dominance results in fascinating self-
organizing, spatio-temporal patterns !see Fig. 8".48
The cyclic invasions stabilize the coexistence of all three

strategies. In particular, they maintain substantial levels of
cooperation for essentially the entire range of r . This surpris-
ing robustness is a direct consequence of the system’s un-
usual response to external effects: if a strategy is externally
supported !for example, by adjusting the parameters", then
not the strategy but its ‘‘predator,’’ that is, the superior strat-
egy benefits from the change. For this reason the frequency
of loners increases with r !larger r favors defection because
cooperation is less beneficial". Similar mechanisms have
been reported for several systems including the maintenance
of biodiversity in bacterial colonies.49–51

B. Regular random graphs and small worlds

For a small fraction of long-range connections Q , regular
small world networks essentially preserve the local structure
of the square lattice and add only a few long-range connec-
tions. Therefore, it is not surprising that the average frequen-
cies of the strategies is barely affected !compare Fig. 9 with
the square lattice results in Fig. 7".
As before, for r&rc1

(RSW)"0.015 (1) (Q"0.03) loners be-
come extinct and clusters of cooperators survive in a sea of
defectors. In contrast, for r!rc1

(RSW) all three strategies coex-
ist. However, on close inspection, it turns out that for

Fig. 8. Snapshot of a typical lattice configuration where cooperators !black",
defectors !white", and loners !gray" coexist in dynamical equilibrium (r
"0.4, -"0.3, and &"0.1). The cyclic dominance of the three strategies
promotes and maintains coexistence and leads to self-organizing patterns:
each domain invades other domains of the inferior strategy while being
invaded by domains of the superior strategy. Note that this distribution is
independent of the initial lattice configuration, but note that in finite systems
all initial frequencies should be sufficiently high to prevent accidental ex-
tinctions while approaching the stationary state.

Fig. 9. The average fraction of cooperators !dotted line", defectors !solid
line", and loners !dashed line" as a function of the cost-to-benefit ratio r on
regular small world networks (Q"0.03, -"0.3, &"0.1, N"1.6
%105– 106). There are three dynamical regimes: Loners go extinct for r
&rc1

(RSW)"0.015 (1) because cooperators thrive on their own through clus-
ter formation. For rc1

(RSW)&r&rc2
(RSW)"0.24 (2) all three strategies coexist

in a stationary state. Finally, for r!rc2
(RSW) global synchronization occurs as

indicated by the maximum and minimum frequency of defectors !!" along
the limit cycle #see Fig. 6!c"$.

Fig. 10. The evolution of the frequencies of cooperators !dotted line", de-
fectors !solid line", and loners !dashed line" on regular small world networks
(Q"0.03, r"0.4, -"0.3, &"0.1, N"106). The few long-range connec-
tions are sufficient to achieve global synchronization. The succession of
maxima !minima" again reflects the cyclic dominance of the three strategies
#see Fig. 6!c"$.
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r!rc2
(RSW)"0.24 (2) (Q"0.03) persistent global periodic

oscillations occur. This behavior is illustrated in Fig. 10 and
indicated in Fig. 9 by the minimal and maximal defector
frequencies.
Thus, the structural disorder introduced by random long-

range connections can induce global synchronization. In con-
trast, on square lattices each site typically alternates its strat-
egy in cycles, but the limited nearest neighbor interactions
are unable to synchronize these local oscillations on a global
scale.
Naturally, the onset and amplitude of global oscillations

depends on Q . For example, the amplitude increases with Q
until eventually a threshold is reached where the oscillations
become big enough such that one strategy goes extinct and
inevitably a second strategy follows !because of the cyclic
dominance", leaving the system in a homogenous absorbing
state. In the limit Q→1, that is, on the random regular graph,
the results are illustrated in Fig. 11.
The cost-to-benefit ratio r distinguishes four dynamical

regimes: For r&rc1
(RRG)"0.020 (1) cooperators and defec-

tors coexist while loners go extinct. For rc1
(RRG)&r&rc2

(RRG)

"0.180 (5), the three strategies reach a stationary state with
vanishing fluctuations !in the limit N→'). Note that when
approaching rc1

(RRG) from above, the frequency of loners van-
ishes linearly, %L.(r#rc1). Above rc2

(RRG) , global synchro-
nization kicks in, which leads to global oscillations of the
strategy frequencies. For rc2

(RRG)&r&rc3
(RRG)"0.263 (3), the

oscillations are bounded as indicated by the maxima and
minima of %D(t) in Fig. 11. !The threshold rc3

(RRG) is obtained
by linear extrapolation of the maximal/minimal defector fre-
quencies." Note that these oscillations persist and do not de-
crease and converge to the corresponding average in the limit
N→' . The amplitude of the oscillations increases with r
such that for r!rc3

(RRG) , one strategy eventually vanishes—
inevitably followed by the extinction of a second strategy—
and the system reaches a homogenous absorbing state.52 The

three basins of attraction, that is, the probabilities to end up
with only cooperators, defectors, or loners, depend on the
parameters r , -, and &. A state of all loners is the most likely
outcome for large r and Q as found in well mixed popula-
tions.
Even though the predictive power of the pair approxima-

tion turns out to be rather limited in the compulsory prison-
er’s dilemma, the results for the voluntary prisoner’s di-
lemma are in very good agreement with simulations on
random regular graphs. Figure 12 illustrates that not only the
frequency of defectors is well reproduced, but also the onset
and the amplitude of global oscillations.

IV. SUMMARY AND CONCLUSIONS

The effects of population structure turn out to be essential
for the evolution of cooperation. The spatial extension of
lattices or the rigid arrangement of individuals on regular
small world networks and random regular graphs enables
cooperators to thrive through cluster formation. In this way
cooperators offset losses against defectors with gains from
fellow cooperators. In contrast, in well mixed populations
cooperators are doomed and defectors reign. However, the
advantages arising through population structures are rather
limited, that is, in the compulsory prisoner’s dilemma inter-
actions very favorable cost-to-benefit ratios r are required
!the benefits must exceed costs by a factor of 20". This situ-
ation changes drastically when voluntary participation is
added by introducing the loner strategy, that is, the option to
not participate in the social enterprise. In well mixed popu-
lations the risk averse loners reign, but on square lattices
cooperators persist for all r . On regular small world net-
works and random regular graphs, the range of r viable for
cooperators is greatly enhanced. Only for very small r do
loners become extinct, that is, the system’s dynamics reverts
voluntary participation back into compulsory interactions.
For larger r , the long-range connections in regular small
world networks and random regular graphs promote global
synchronization and lead to global periodic oscillations of

Fig. 11. The average fraction of cooperators !dotted line", defectors !solid
line", and loners !dashed line" as a function of r on RRG (-"0.3, &
"0.1, N"5%105). There are four dynamical regimes: Loners go extinct for
r&rc1

(RRG)"0.020 (1), for rc1
(RRG)&r&rc2

(RRG)"0.180 (5) all three strategies
coexist in a stationary state. For rc2

(RRG)&r&rc3
(RRG)"0.263 (3) the strategy

frequencies oscillate periodically, and for r!rc3
(RRG) , the amplitude of the

oscillations increases until one strategy goes extinct and subsequently the
system reaches a homogenous absorbing state. Persistent oscillations are
indicated by the maximum and minimum values of %D !!".

Fig. 12. The average frequency of defectors !$" on RRG together with
predictions of the pair approximation !solid line" (-"0.3, &"0.1, N"5
%105). In the regime of global oscillations, the maximum and minimum
frequencies of defectors along the limit cycle are indicated by simulations
!!" and the pair approximation !dashed line". For r!0.298 (2) the pair
approximation predicts spiral trajectories converging toward the boundary of
the simplex S3 .
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the strategy frequencies. The amplitude of this limit cycle
increases with r as well as with the fraction of rewired con-
nections on regular small world networks and eventually
may lead to the extinction of either strategy. The cyclic
dominance of cooperators, defectors, and loners dictates that
inevitably a second strategy is doomed, leaving a homog-
enous absorbing state behind. The basin of attraction for the
three absorbing states depends on the parameter values but
usually loners survive as in the well mixed scenario.
From an evolutionary perspective, not only is the

persistence/abundance of cooperation of immediate interest,
but also the individuals’ performance, that is, their payoffs.
In the compulsory game and in the absence of cooperation
the payoff is clearly zero, but below the threshold where
cooperators survive, the average population payoff increases
to 0.635 !1" on the square lattice and 0.654 !1" on random
regular graphs in the limit r→0 for -"0.3 and &"0.1.
These payoffs are still less than the maximum return for
mutual cooperation with R"1 for mutual cooperation, but at
least the population structure is capable of resolving part of
the dilemma. In the voluntary prisoner’s dilemma in well
mixed populations everybody obviously earns the loner’s
payoff -. But in structured populations everybody is again
better off—at least on average !see Fig. 13". Interestingly, the
average payoff of cooperators is substantially higher than
that of defectors, but, nevertheless, the prospects and temp-
tation of short term profits limits the extent of cooperative
behavior. As in the compulsory prisoner’s dilemma, struc-
tured populations, that is, fixed partnerships, partially resolve
the dilemma and improve social welfare.
The insights into the evolution of cooperation would not

be possible without the fruitful applications of methods and
techniques developed in statistical and condensed matter
physics, in particular, the concept of phase transitions and
universality classes. Intriguing and fruitful interdisciplinary
links between physics, biology, and the social sciences are

emerging,53 but the future prospects of such collaborations
depend on behavioral scientists embracing mathematical
concepts as well as physicists adjusting their theoretical
framework to the conditions and requirements arising in the
dynamics of living systems.

APPENDIX: PAIR APPROXIMATION IN GAME
THEORY

An analytical approximation of the spatial dynamics can
be obtained using the pair approximation. Instead of consid-
ering the frequency of strategies as in well mixed popula-
tions, that is, in mean-field theory, the pair approximation
tracks the frequencies of strategy pairs. Such pair configura-
tions ps ,s" indicate the probability of finding an individual
playing strategy s accompanied by a neighbor playing s". In
principle, s ,s" may refer to members of an arbitrary finite set
of strategies. However, to keep the formulas simple, we con-
sider cooperators C and defectors D only. It is straightfor-
ward but tedious to include a third strategy such as
loners.47,54
The pair approximation is based on three conditions: com-

patibility, symmetry, and closure. Consistency and compat-
ibility in mean-field theory requires that ps"/s"ps ,s" , where
ps denotes the frequency of s and the sum runs over the set
of all strategies under consideration. For two strategies this
condition yields the symmetry ps ,s""ps",s . In general, this
symmetry does not follow from the compatibility
requirements,55 but can be assumed for stochastic update
rules. Finally and most importantly, configuration probabili-
ties of larger clusters are approximated by pair configuration
probabilities—this approximation is known as closure. For
example, the configuration probability of a three site cluster
s ,s",s# is approximated by ps ,s",s#"ps ,s"ps",s# /ps" , where
the denominator corrects for the fact that both ps ,s" and ps",s#
include the probability for s".
In spatially structured populations, the strategy of a ran-

domly chosen site A is updated by comparing its perfor-
mance to a randomly chosen neighbor B . Figure 14 illus-
trates this situation for a square lattice with four neighbors.
The payoffs PA and PB of A and B are determined by

accumulating the payoffs in interactions with their neighbors
x , y , z , B and u , v , w , A , respectively. The pair approxi-

Fig. 13. The average population payoff in the voluntary prisoner’s dilemma
as a function of r for different population structures: square lattice !"",
RRG !$", and regular small world networks !%" with Q"0.03, -"0.3,
&"0.1 and N"1.6%105– 106 together with predictions from the pair ap-
proximation !solid line". For comparison, the average performance of well-
mixed populations !dashed line" is shown, which amounts to the loners
payoff -. In structured populations the payoff lies significantly above -
#with the exception of r!rc3

(RRG)"0.263 (3), where increasing oscillations
again favor homogenous states with all loners$, but nevertheless quite a bit
below R"1 for mutual cooperation. Thus, population structure is capable of
at least partly resolving the dilemma of cooperation.

Fig. 14. Small part of square lattice indicating the relevant configuration for
the pair approximation with sites A and B . This configuration is used to
determine changes in the pair configuration probabilities pA ,B→B ,B . The fact
that x , u and z , w are neighbors is neglected by the pair approximation, that
is, it does not take into account corrections arising from loops. For this
reason, the pair approximation is unable to distinguish between square lat-
tices, regular small world networks, and RRG with identical connectivities.
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mation is completed by determining the evolution of the pair
configuration probabilities, that is, the probability that the
pair pA ,B becomes pB ,B :

pA ,B→B ,B" /
x ,y ,z

/
u ,v ,w

f !PB#PA"

%
px ,Apy ,Apz ,A pA ,Bpu ,B pv ,Bpw ,B

pA
3 pB

3 , !A1"

where the transition probability f (PB#PA) #see Eq. !2"$ is
multiplied by the configuration probability and summed over
all possible configurations. If B succeeds in populating site
A , the pair configuration probabilities change: the probabili-
ties pB ,B , pB ,x , pB ,y , and pB ,z increase, while the probabili-
ties pA ,B , pA ,x , pA ,y , and pA ,z decrease. These changes re-
sult in a set of ordinary differential equations:

ṗc ,c" /
x ,y ,z

#nc!x ,y ,z "$1$pd ,xpd ,ypd ,z /
u ,v ,w

pc ,upc ,vpc ,w f !Pc!u ,v ,w "#Pd!x ,y ,z ""

# /
x ,y ,z

nc!x ,y ,z "pc ,xpc ,ypc ,z /
u ,v ,w

pd ,upd ,vpd ,w f !Pd!u ,v ,w "#Pc!x ,y ,z "", !A2a"

ṗc ,d" /
x ,y ,z

#1#nc!x ,y ,z "$pd ,xpd ,ypd ,z /
u ,v ,w

pc ,upc ,vpc ,w f !Pc!u ,v ,w "#Pd!x ,y ,z ""

# /
x ,y ,z

#2#nc!x ,y ,z "$pc ,xpc ,ypc ,z /
u ,v ,w

pd ,upd ,vpd ,w f !Pd!u ,v ,w "#Pc!x ,y ,z "", !A2b"

where nc(x ,y ,z) is the number of cooperators among the
neighbors x , y , z , and Pc(x ,y ,z) and Pd(x ,y ,z) specify the
payoffs of a cooperator !defector" interacting with the neigh-
bors x , y , z plus a defector !cooperator". Note that these two
differential equations are sufficient because of the symmetry
condition pc ,d"pd ,c and the obvious constraint pc ,c$pc ,d
$pd ,c$pd ,d"1. !Including the loner strategy leads to a set
of nine ordinary differential equations, but symmetry condi-
tions and constraints reduce the set to five equations." For
simplicity, Eq. !A2" omits the common factor 2pc ,d /(pc

3pd
3),

which corresponds to a nonlinear transformation of the time
scale but leaves equilibrium unaffected. The equilibrium val-
ues p̂ s ,s" are obtained either by numerical integration or by
setting ṗc ,c" ṗc ,d"0 and solving for pc ,c and pc ,d . The p̂ s ,s"
then return an approximation of the equilibrium frequencies
p̂ s"/s"p̂ s ,s" .
Generally, predictions by the pair approximation are less

reliable near the extinction thresholds, because this approxi-
mation does not account for corrections arising from loops
nor the long range correlations occurring in the vicinity of
critical transitions. The accuracy of this technique can be
improved by considering configuration probabilities of larger
clusters. The improvement may not only be quantitative,18
but in some cases even qualitative.56
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Rowland’s Ring. Rowland’s Ring is a device for tracing out curves of magnetic induction for an iron ring as a function of the magnetizing field applied to
it. The resulting trace is known as a hysteresis curve, and the area enclosed by the B-H curve is a measure of the losses in the iron when it goes through a
complete cycle. Up to the 1960s the experiment was done with aid of a ballistic galvanometer; today we would probably wind the coils on a ferrite ring and
use a modern integrating circuit in place of the galvanometer. Henry Augustus Rowland !1858–1901" developed the device and experiment. This example is
in the Greenslade collection. !Photograph and Notes by Thomas B. Greenslade, Jr., Kenyon College"
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