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We solve the integral equation that describes an oscillating inhomogeneous string by using a spectral
expansion method in terms of Chebyshev polynomials. The result is compared with the solution of
the corresponding differential equation, obtained by an expansion into a set of sine-wave functions.
The accuracy of the two methods is determined by comparison with an iterative method, which
allows a precision of one part in 1011. This iterative method is based on a method introduced by
Hartree and is implemented by using the spectral expansion procedures. © 2011 American Association of
Physics Teachers.
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I. INTRODUCTION

Excellent textbooks1 are now available for courses in com-
putational physics, as well as papers describing such
courses.2 The vibrating string provides an appealing topic for
such courses3 because the solution of the corresponding dif-
ferential equation can be achieved in several ways, and com-
parisons of the different methods can be provided.

If the string is inhomogeneous, the separation of variables
method becomes more complicated than for the homogenous
case because the equation for the spatial part becomes a
Sturm–Liouville eigenvalue equation whose solutions are no
longer given by a simple set of sine waves. This Sturm-
Liouville equation is usually solved by an expansion into a
basis set of functions, which are the sine waves for a
clamped homogeneous string, and which leads to a matrix
equation for the expansion coefficients !this method will be
denoted as the Fourier expansion method". The eigenvalues
and eigenvectors of this matrix provide the Sturm–Liouville
functions, and hence the accuracy depends on the size of the
basis and hence on the size of the matrix.

Another method for solving the Sturm–Liouville differen-
tial equation consists of introducing an integral equation ver-
sion of the Sturm–Liouville differential equation and solving
the latter by an expansion into Chebyshev polynomials.4,5

The advantage of this method, to be denoted as the integral
equation method !IEM", is that its accuracy can be automati-
cally pre-determined; the number of mesh points required to
achieve a particular accuracy is much smaller than for finite
difference methods,5 and the size of the matrices is kept
small by a partition technique, thus avoiding the limitations
of large dense matrices in conventional integral equation so-
lution methods.6

The purpose of this paper is to explain the integral equa-
tion method in simple terms, and to apply it to the solution of
the inhomogeneous vibrating string. For comparison pur-
poses a more conventional Fourier expansion method will be
described in Sec. II. As preparation to the IEM the conver-
gence properties of the expansion of a function into Cheby-
shev polynomials and the truncation errors of the expansion
are described in Sec. III. The integral equation that is equiva-
lent to the Sturm–Liouville differential equation is presented
in Sec. IV, and the solution by means of the Integral Equa-
tion Method is described. That solution leads to a matrix
equation, whose eigenvalues and eigenfunctions are approxi-
mations to the desired solution of the Sturm–Liouville equa-
tion. A comparison of the eigenvalues obtained in Sec. II and

those obtained in Sec. IV leads to a better understanding of
the Fourier Expansion and the Integral Equation methods. In
Sec. V the eigenvalues of the integral Sturm–Liouville equa-
tion are obtained by an iterative method !to be denoted as
extended Hartree method". This method avoids having to ob-
tain the eigenvalues of a big matrix, which is the case with
the two other methods described above, and whose accuracy
is not a priori known, by finding each eigenvalue iteratively,
with a precision that can be pre-determined. This method
was first devised by Hartree7 for the solution of energy ei-
genvalues of the Schrödinger equation, and has been adapted
to the solution of the integral equation based on the expan-
sion into Chebyshev polynomials.8 We adapt this method to
the solution of the vibrating inhomogeneous string. Because
it can achieve an accuracy of one part in 1011 for both the
eigenvalues and eigenfunctions of the Sturm–Liouville equa-
tion, it can provide benchmark values against which the re-
sults of other methods can be compared. Section VI summa-
rizes our results and conclusions.

Expansions into Chebyshev polynomials converge quickly
under certain conditions. Mathematicians use the word
“spectral” to denote this convergence property; in this con-
text, spectral does not imply the spectra of frequencies. The
general method of spectral expansions is not new !since ca.
1970".9 Its realization in terms of Chebyshev expansions as
applied to the solution of the vibrating string Sturm–
Liouville integral equation, described here in Secs. III and
IV, is the main purpose of this paper. The method for the
solution of the string equation is similar to the solution of the
time independent Schrödinger equation. Because the proper-
ties of the string are much easier to visualize than the prop-
erties of the Schrödinger equation, the present discussion
also serves as an introduction to several numerical methods
for obtaining the eigenvalues and eigenfunctions of the
Schrödinger equation. The numerical calculations are done
with Matlab,10 and the programs for the calculations we dis-
cuss are available in the Compadre digital library.11

II. THE INHOMOGENEOUS VIBRATING STRING

Consider a stretched metallic string clamped between two
horizontal points The distance between the fixed points is L,
and the mass per unit length ! of the string is not a
constant,12,13 and hence the speed of propagation of the
waves depends on the location along the string. When a dis-
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turbance is imparted to the string, the particles in the string
vibrate in the vertical direction with a distribution of fre-
quencies that is to be determined.

We denote by y!x , t" the !small" displacement of a point on
the string in the vertical direction away from the equilibrium
position y=0 at a horizontal distance x of the point from the
left end at time t. The wave equation is

!2y

!x2 −
!

T

!2y

!t2 = 0, !1"

where T is the tension along the string. We define the dimen-
sionless function R!x" which describes the variation of !
with x as

!!x" = !0R!x" , !2"

where !0 is some fixed value of !. If we define the reference
speed c by !0 /T=1 /c2, Eq. !1" becomes

!2y

!x2 −
1
c2R!x"

!2y

!t2 = 0. !3"

If we use separation of variables, y!x , t"="!x"A!t", we ob-
tain

d2"!x"
dx2 + #R!x""!x" = 0, !4"

and

d2A

dt2 = − #c2A . !5"

A general solution of Eq. !5" is a cos!$t"+b sin!$t", with
$=c%#, where # is an eigenvalue of Eq. !4" that is assumed
to be positive.

Equation !4" is a Sturm–Liouville equation14 with an infi-
nite set of eigenvalues #n !n=1,2 ,3 , . . .". The corresponding
eigenfunctions "n!x" form a complete set in terms of which
the general solution can be written as

y!x,t" = &
n=1

%

#an cos!$nt" + bn sin!$nt"$"n!x" , !6"

where wn=c%#n. The objective is to calculate the functions
"n!x" and the eigenvalues #n as solutions of Eq. !4", with the
boundary conditions that y=0 both for x=0 and x=L,

"n!0" = "n!L" = 0, !7"

and for t=0

y!x,0" = f!x" and dy/dt't=0 = g!x" . !8"

The constants an and bn in Eq. !6" are obtained from the
initial displacement of the string from its equilibrium posi-
tion f!x" and the initial velocity g!x" in terms of integrals of
the functions "n!x".

an = (
0

L

f!x""n!x"dx, bn =
1

$n
(

0

L

g!x""n!x"dx . !9"

A. The homogeneous string

If the string is homogeneous, R!x"=1 and the "n are given
by sine functions. That is, "n!x")&n!x", with

&n!x" = %2/L sin!knx", kn = n!'/L" !n = 1,2,3. . ." ,

!10"

and the eigenvalues become #n=kn
2= #n' /L$2. If we assume

that the functions f!x" and g!x" are given by

f!x" = x sin!'x/L", g!x" = 0, !11"

we can evaluate Eq. !9" for the coefficients an !all the bn
=0". We find that all an vanish for n odd, with the exception
of n=1, for which

a1 = −
L2

4
%2

L
. !12"

For n even, the result for an is

an =
L2

'2%2
L
* 1

!1 + n"2 −
1

!1 − n"2+ !n = 2,4, . . ." . !13"

These results allow us to calculate the truncated form of the
sum in Eq. !6"

y!nmax"!x,t" = &
n=1

nmax

#an cos!$nt" + bn sin!$nt"$&n!x" . !14"

Some results are displayed in Fig. 1, using the values L
=1 m, c=800 m /s, and with f and g given by Eq. !11". As
time progresses, the wave reflects from the right clamping
point, and after approximately 18 time units L/c, returns to
its initial configuration.

For n(1, an approaches 0 as !1 /n"3. It is desirable to
examine how many terms are needed in the sum in Eq. !14"
to obtain an accuracy of four significant figures in y. A good
guess is that the sum of all terms not included in the sum

&
nmax+1

%

an cos!$nt" , − 4
L2

'2%2
L
(

nmax+1

% 1
n3cos- c'

L
tn.dn ,

!15"

should be less than 10−4. The integral in Eq. !15" is smaller
than /nmax+1

% !1 /n"3dn= !nmax+1"−2 /2 !because the cosine
term produces cancellations", and we obtain the estimate

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

y
=

ve
rt

ic
al

di
sp

la
ce

m
en

t

4

t = 0

6

8

10

Fig. 1. Vibrations on the homogeneous string. The filled circles mark the
initial displacement of the string from its equilibrium position, given by
Eq. !11". The numbers next to each curve indicate the time in units of L /c.
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0 &
nmax+1

%

an cos!$nt"0 ) 2
L2

'2%2
L

!nmax + 1"−2. !16"

For nmax=50 the right-hand side of Eq. !16" is ,10−4. A
numerical evaluation of the difference 'y!50"!x ,0"− f!x"',
where f!x" is defined in Eq. !11", is less than 10−5, which
confirms that for nmax=50 the accuracy expected for y!50"

*!x , t" is better than one part in 104.

B. The solution of the inhomogeneous string
by a Fourier series expansion

An approximate solution to Eq. !4" for "n is to expand it in
terms of the sine functions in Eq. !10" because these func-
tions obey the same boundary conditions as "n. The approxi-
mation consists in truncating this expansion at the upper
limit !max=N. We drop the subscript and superscript !n" for
now, and write

"!N"!x" = &
!!=1

N

d!!&!!!x" . !17"

We substitute Eq. !17" into Eq. !4", remember that
d2&!!x" /dt2=−k!

2&!!x", multiply Eq. !4" by the function
&!!x", integrate both sides of the equation over dx from x
=0 to x=L, and use the orthonormality of the functions &!!x"
to obtain

− k!
2d! + # &

!!=1

N

R!,!!d!! = 0, !18"

where

R!,!! = (
0

L

&!!x"R!x"&!!!x"dx !19"

are the matrix elements of the function R over the basis
functions &!. Equation !18" can also be written in the matrix
form

1
k1

2

k2
2

k3
2

!
kN

2
21

d1

d2

d3

]
dN

2
= #1

R1,1 R1,2 R1,3 ¯ R1,N

R2,1 R2,2 R2,3 ¯ R2,N

R3,1 R3,2 R3,3 ¯ R3,N

] ] ] ! ]
RN,1 RN,2 RN,3 ¯ RN,N

21
d1

d2

d3

]
dN

2 , !20"

or more succinctly as

k2d! = #Rd! . !21"

Bold letters indicate matrices, and a vector quantity indicates
a !N*1" column. Because all the k! are positive, the matrix
k−1 can be defined as

k−1 =1
k1

−1

k2
−1

k3
−1

!
kN

−1
2 , !22"

and we can transform Eq. !21" to

Mfourieru!n =
1

#s
u!n, !n = 1,2, . . . N" , !23"

where

Mfourier = k−1Rk−1, !24"

and

u!n = kd!n. !25"

Although Eq. !21" is a generalized eigenvalue equation,
Eq. !23" is a simple eigenvalue equation. The vectors u!n are
the N eigenvectors of the N*N matrix Mfourier, and 1 /#n are
the eigenvalues. Because R is a symmetric matrix, Mfourier is
also symmetric. The eigenvectors of a symmetric matrix are
orthogonal to each other, that is, !u!n"T ·u!m=+n,m. Here T in-
dicates transposition. However, the vectors d!n are not or-
thogonal to each other because !d!n"T ·d!m= !u!n"Tk−2u!m.

In summary, the procedure for obtaining the solution of
the inhomogeneous string by a Fourier series expansion is as
follows:

1. Choose an upper truncation limit N of the sum !17".
2. Calculate the matrix elements R!,!! to obtain the N*N

matrix R.
3. Construct the matrix Mfourier from Eq. !24", and find the

eigenvalues 1 /#n and eigenvectors u!n, !n=1,2 , . . . ,N",
by using the Matlab eigenvalue command #V ,D$
=eig!M". The output D is a diagonal matrix of the eigen-
values, and V is a matrix whose columns are the corre-
sponding eigenvectors, so that MV=VD.

4. Let ,! !x" be the column vector of the N basis functions
&!!x". Then "!x" can be written as !the superscript N is
dropped"

"n!x" = !u!n"Tk−1 · ,! !x" . !26"

5. From Eq. !26" the coefficients an and bn can be written as

an = 3f"n4 = !u!n"Tk−1 · 3f,! !x"4 !27a"

bn = 3g"n4 = !u!n"Tk−1 · 3g,! !x"4 , !27b"

where 3f,! !x"4 is the column vector of the integrals
3f&!4=/0

Lf!x"&!!x"dx, !!=1,2 , . . . ,N".
6. The final expression for y!x , t" can be obtained by first

obtaining the coefficients en

en!t" = !u!n"Tk−1*3f,! !x"4cos!wnt" + 3g,! !x"4
1

wn
sin!wnt"+ ,

!28"

and then performing the sum
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y!x,t" = &
n=1

N

en!t""n!x" = e!T · -! , !29"

where e! is the column vector of en, and -! is the column
vector of "n. We limit ourselves in this paper to calculat-
ing the eigenvalues #n and to studying their accuracy.

We assume that R!x" changes with the distance x from the
left end of the string as

R!x" = 1 + 2x2, !30"

The integrals !19" for the matrix elements R!,!! can be ob-
tained analytically with the result

R!,!! = 4- L

'
.2

!− 1"!+!!* 1
!! − !!"2 −

1
!! + !!"2+ !! " !!"

!31"

R!,! = 1 + 2L2*1
3

−
2

!2'!"2+ !! = !!" . !32"

The numerical determination of the matrices R and
Mfourier, using the same numerical values for L and c as for
the homogeneous string, is accomplished with the program
string_fourier which calls the function inh_str_M, both of
which are written in Matlab by the authors. The value of N
in the sum !17" is set equal to either 30 or 60, and the cor-
responding dimension of the matrices Mfourier and R are
N*N.

The results for the eigenvalues #n are shown in Fig. 2 and
the corresponding frequencies are shown in Fig. 3. The fre-
quencies for R!x"=1 are given by the open circles in Fig. 3.
Because the inhomogeneous string is more dense at large
values of x than the homogeneous one, the corresponding
eigenfrequencies are correspondingly smaller. The eigenfre-
quencies of the inhomogeneous string nearly fall on a
straight line, which means that the frequencies are nearly
equispaced; that is, they nearly follow the same harmonic
relation as the ones for the homogeneous string. The reason
for this property has not been investigated, but could be re-
lated to the possibility of mapping the spectrum of an inho-
mogeneous string to that of a homogeneous one.12 Near the
fundamental frequency slight deviations from harmonicity
occur, as illustrated in Fig. 4. However, small deviations
from harmonicity are also caused by other effects such as the
stiffness of the string.

Figures 2 and 3 show that for N=30, the eigenvalues be-
come unreliable for n.22. This discrepancy is a general
property of the high-n eigenvalues of a finite non-diagonal
matrix. Table I and Fig. 5 illustrate the dependence of the
eigenvalues on N by comparing two eigenvalues for the same
n of the matrix Mfourier for N=30 and N=60. The iterative
method described in Sec. V does not suffer from this inac-
curacy.

Table I. Eigenvalues of the matrix M, Eq. !24" for two different dimensions.

n N=30 N=60

1 1.614775590198150*10−1 1.6147755902115*10−1

20 4.092*10−4 4.0933853097811*10−4
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Fig. 2. The eigenvalues of the matrix Mfourier defined in Eq. !24". The
quantity N indicates the truncation value of the sum in Eq. !17". The dimen-
sion of the matrix Mfourier is N*N. The figure shows that the eigenvalues of
an N*N matrix become unreliable for an eigenvalue index close to N.
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1005d!n+1" /d!n"−16. The inhomogeneity is given by R!x"=1+F0x2 with
F0 either 2 or 4.
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III. SPECTRAL EXPANSIONS INTO CHEBYSHEV
POLYNOMIALS

We first describe some of the properties of Chebyshev
polynomials, and then present the Curtis–Clenshaw method15

for expanding functions in terms of the Chebyshev polyno-
mials, with an emphasis on the errors associated with the
truncation of the expansion. The motivation is to make
meaningful the application of these expansions to solving
integral equations, which is basically the IEM.

A. Properties of Chebyshev polynomials

The Chebyshev polynomials Tn!x" n=0,1 ,2 , . . . provide a
useful set of basis functions.16,17 We review the properties
needed for the present application in the following. The vari-
able x is in the interval #−1,+1$, and is related to the angle /
by x=cos /. In terms of x the Tn are given by T0=1, T1=x,
T2=2x2−1, and Tn+1=2xTn−Tn−1. In terms of / they are

Tn = cos!n/" !0 0 / 0 '" . !33"

It is clear from Eq. !33" that −10Tn!x"01, and the larger
n, the more zeros these polynomials have. The Tn are or-
thogonal to each other with the weight function !1−x2"−1/2.
The integral

(
−1

+1

Tn!x"Tm!x"!1 − x2"−1/2dx = (
0

'

cos!n/"cos!m/"d/ ,

!34"

is 0 if n"m, ' /2 if n=m"0, and ' if n=m=0. A plot of
Tn!x" for n=0, 1, 2, and 3 is shown in Fig. 6, !where the
subscript n is denoted as v" which illustrates that for equis-
paced values of / the corresponding values of x are not eq-
uispaced.

The values of x, denoted as 1i, for which Tn=0, are also
not equispaced. As can be seen from Eq. !33" the zeros 1i of
TN+1!x" are given for N.0 by

1i = cos* !2i + 1"
2N + 2

'+ !i = 0,1,2, . . . N" . !35"

B. The expansion method

Consider a general function f!r" defined in the interval
#a ,b$, not to be confused with the function defined in Eq.
!11". To expand it into Chebyshev polynomials, we first
transform the variable r to a new variable x defined in the
interval #−1,+1$. This transformation can be achieved by the
linear map

r = 2x + 3 , !36"

with 2= !b−a" /2 and 3= !b+a" /2. In terms of x we obtain

the function f̄!x"= f!r", and the desired !truncated" expansion
is

f̄ !N"!x" = &
n=0

N

anTn!x" . !37"

The conventional method of obtaining the expansion coeffi-
cients an is to multiply Eq. !37" on both sides by
Tm!x" /%1−x2, integrate over x from 41 to +1, and use the
orthogonality condition !34". A more computer friendly al-
ternative was given in Ref. 15 and consists in writing Eq.
!37" N+1 times for the zeros 10, 11 , . . . ,1N of the first Cheby-
shev polynomial TN+1 not included in the sum !37". We thus
obtain N+1 linear equations for the N+1 coefficients,

f̄ !N"!10" = &
n=0

N

anTn!10" !38a"

f̄ !N"!11" = &
n=0

N

anTn!11" !38b"

]

f̄ !N"!1N" = &
n=0

N

anTn!1N" , !38c"

which in matrix notation has the form
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Fig. 5. The dependence of the eigenvalues of the matrix Mfourier on the
dimension N*N of the matrix. The y-axis shows the absolute value of the
difference between two sets of eigenvalues, one for N=30, the other for N
=60. Some numerical values are given in Table I. The figure and Table I
table illustrate the sensitivity of the eigenvalue to the matrix truncation
number N.
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421 421Am. J. Phys., Vol. 79, No. 4, April 2011 G. Rawitscher and J. Liss



1 f̄!10"

f̄!11"
]

f̄!1N"
2 = C1a0

a1

]
an

2 !39"

where C is known as the discrete cosine transform.9 The
points 1i are “support points” because the function f̄ has to
be known only at these points. The elements of the matrix C
are Ci,j =Tj!1i", and its columns are orthogonal to each other.
After column normalization, we obtain an orthogonal matrix,
and hence the inverse C−1 can be easily obtained, without the
need to invoke a numerical matrix inversion algorithm. The
matrix C−1 is denoted as CM1 in the Matlab function
#C,CM1,z$=C_CM1!N".11 The row vector z contains the
values 1i in descending order !i=N ,N−1, . . . ,0". If we insert
the values of ai obtained from Eq. !39" into Eq. !37", we
obtain the value of the truncated function f̄ !N"!x" at any point
in the interval #−1,+1$, and hence the procedure is also an
interpolation method.18,19

How good is the approximation !37" to f̄!x"? If the func-
tion is differentiable p times, it can be shown that

' f̄ !N"!x" − f̄!x"' 0
K

p − 1
1

Np−1 , !40"

where the constant K depends on the pth derivative of f̄ . If
the function f̄ is infinitely differentiable, then p=% and the
error in Eq. !40" decreases with N faster than any power of
N. This decrease is known as the supra-algebraic conver-
gence of the approximation of f̄ !N"!x" to f̄!x", a property also

denoted by the term “spectral.”9 The expansion of f̄!x" in
terms of Chebyshev polynomials18,19 displays a spectral con-
vergence in addition to converging uniformly.19

According to Theorem 2 in Ref. 17 the deviation of
f̄ !N"!x" from f̄!x" is given by

' f̄ !N"!x" − f̄!x"' , aN+1TN+1!x"#1 + 2xaN+2/aN+1$ , !41"

which in practice can be rewritten as

' f̄ !N"!x" − f̄!x"' 0 'aN+1' . !42"

Equations !41" and !42" can be understood from the fact that
once N is sufficiently large, then for spectral expansions the
values of an for n5N decrease very rapidly to zero, and
because the Tn have a magnitude less than 1, the residual
sum in Eq. !37" is less than or equal to aN+1. Equation !42"
enables us to pre-assign an accuracy requirement tol for the
expansion !37". For a given value of N, the size of one or of
several of the partitions of the domain of r from 0 to rmax
within which the function f!r" is expanded can be deter-
mined adaptively, or else, for a given size of the partitions, a
value of N can be determined for each partition such that in
either case the sum of the absolute values of the last three
expansion coefficients aN−2 ,aN−1, and aN is less than the
value of tol.

We now give an example that shows that, if the function f
is not infinitely differentiable, then the corresponding Cheby-
shev expansion converges slowly. The two functions to be
expanded are

f1!r" = r1/2 sin!r" !43a"

f2!r" = r sin!r" !43b"

in the interval 00r0'. Although f2 is infinitely differen-
tiable, all the derivatives of f1 are singular at r=0. The re-
sults for the Chebyshev expansions for f1 and f2 using the
Curtis–Clenshaw method15 are displayed in Fig. 7.

An expansion in a Fourier series of the function f!r"
=r sin!'r" for 00r01 is also done for comparison with the
Chebyshev expansion. We find that, with the exception of
n=1, all Fourier coefficients an defined in Eqs. !9"–!13" van-
ish for odd n. For n(1, an approaches 0 as −4%!2 /'"
*!1 /n"3. The absolute value of an is shown in Fig. 8. In
comparison to Fig. 7 we see that the Fourier expansion co-
efficients decrease with n more slowly than the Chebyshev
expansion coefficients.
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C. Integrals based on spectral expansions

To prepare for representing an integral operator in terms of
Chebyshev polynomials, the integrals of Chebyshev expan-
sions will now be discussed.20 Given a function f!r" defined
in the interval a0r0b, we will obtain an approximation to
the indefinite integral I!r"

I!r" = (
a

r

f!r!"dr!. !44"

As is done in Eq. !36" the function f!r" is transformed to the

function f̄!x" for the variable x! #−1,+1$. Then the integral
!44" becomes

I!r" =
!b − a"

2
IL!x" , !45"

where

IL!x" = (
−1

x

f̄!x!"dx!. !46"

We wish to obtain the convergence property of the approxi-
mation to IL!x"

IL
!N"!x" = &

n=0

N

bnTn!x" , !47"

where it is assumed that f̄!x" has been expanded in a series of
Chebyshev polynomials, as given by Eq. !37". In view of the
integral properties of Chebyshev polynomials, the coeffi-
cients bn can be expressed in terms of the expansion coeffi-
cients an of f̄!x",

1b0

b1

]
bN

2 = SL1a0

a1

]
aN

2 !48"

by means of the matrix SL !Ref. 15" without loss of accuracy.
For the integral

IR!x" = (
x

1

f̄!x!"dx! !49"

an expression similar to that in Eq. !48" exists, with the
matrix SL replaced by SR. Numerical expressions for the ma-
trices SL and SR can be found in Refs. 4 and 11 under the
name SL_SR. In particular, by noting that Tn!1"=1 for all n,
an approximation to the definite integral I!r2"=/a

bf!r!"dr! is
given by

I!N"!b" =
!a − b"

2 &
n=0

N

bn, !50"

with an error comparable to Eq. !42" of the order of 'bN+1'.
The method of evaluating a definite integral by means of Eq.
!50" is denoted as Gauss–Chebyshev quadrature. The exis-
tence of Eq. !48" makes the expansion into Chebyshev

polynomials suitable for the numerical solution of integral
equations.

As an example, the integrals

I1 = (
0

'

r1/2 sin!r"dr !51a"

I2 = (
0

'

r sin!r"dr !51b"

are evaluated using Eq. !50". For comparison purposes I1
was also evaluated using the Matlab quadrature function
quad!@myfun,0, ',acc", which calculates the integral by an
adaptive finite difference method, where acc denotes the pre-
cision with which the quadrature result is given. The result is
shown in the last line of Table II and demonstrates that the
Gauss–Chebyshev quadrature method converges very slowly
with N for discontinuous functions,20 as a result of the slow-
ness of the expansion of discontinuous functions, such as f1,
into Chebyshev polynomials.

For the analytic function f2!r"=r sin!r" the corresponding
integral converges with N much faster, reaching machine ac-
curacy for N=18. These convergence properties are dis-
played in Fig. 9, where a comparison of the convergence
using Simpson’s quadrature method is also shown. It can be
seen from Fig. 9 that the Simpson quadrature method con-
verges faster for I2 than I1, but the Gauss–Chebyshev quadra-
ture method converges even faster.

Table II. The results of the integral in Eq. !51a" obtained with the Cheby-
shev method. For this case the Chebyshev method with close to 60 expan-
sion coefficients is accurate to only seven significant figures.

Chebyshev, N=58 2.43532116647
Chebyshev, N=59 2.43532116702
Quad, acc=10−11 2.43532116417
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Fig. 9. Comparison of the convergence properties of the Gauss-Chebyshev
and the Simpson integration procedures as a function of the number of
support points. The labels 1 and 2 denote the integrals I1 and I2, defined in
Eqs. !51a" and !51b", respectively. The figure illustrates that the integral of
a singular function requires more meshpoints for its evaluation than a non-
singular function to reach a given accuracy. Although the Chebyshev expan-
sion method exhibits the same feature, it converges faster than the Simpson
method. The latter is especially pronounced for the non-singular function.
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IV. THE INTEGRAL EQUATION
FOR THE INHOMOGENEOUS STRING

In Sec. II B the Sturm–Liouville functions "n!r", which
are solutions of Eq. !4", were obtained by expanding them
into a set of Fourier functions &!!r" and obtaining the eigen-
functions and eigenvalues of the resulting matrix Mfourier.
This matrix consists of overlap integrals of the function R!x"
with the basis functions &!!x". In the present section we
transform Eq. !4" into an integral equation because the nu-
merical solution of the latter is more stable, that is, the
roundoff errors accumulate more slowly, than for that of the
former. We also avoid the need to do overlap integrals Eq.
!19", to obtain the expansion coefficients. The basis functions
are the Chebyshev polynomials for which the expansion se-
ries converges much faster than for the Fourier expansion.
The use of integral equations to replace a Sturm–Liouville
differential equation has been described in Ref. 13, and in the
present application the integral equation will be solved nu-
merically.

The integral equation that is equivalent to the Eq. !4" is

1
#

"!r" = − (
0

L

G!r,r!"R!r!""!r!"dr!, !52"

where the Green’s function G!r ,r!" is given by

G!r,r!" = 7−
1
L

F!r"G!r!" !r ) r!"

−
1
L

F!r!"G!r" !r 5 r!" ,8 !53"

and F!r"=r and G!r"= !L−r". Both F and G satisfy
d2F /dr2=0 and d2G /dr2=0, and are linearly independent of
each other. Because of the separable nature of G, the integral
on the right-hand side of Eq. !52" can be written as

(
0

L

G!r,r!"R!r!""!r!"dr!

= −
1
L

G!r"(
0

r

F!r!"R!r!""!r!"dr!

−
1
L

F!r"(
r

L

G!r!"R!r!""!r!"dr!. !54"

Because F vanishes at r=0 and G vanishes at r=L, and
/0

LG!r ,r!"R!r!""!r!"dr! vanishes for both r=0 and r=L, the
function " satisfies the boundary conditions and vanishes at
both x=0 and x=L. These properties can be seen by setting
the value of r in Eq. !54" equal to 0 and L, respectively. A
proof that "!r" defined by Eq. !52" satisfies Eq. !4" can be
obtained by calculating the second derivative with respect to
r of Eq. !54".

The numerical solution of Eq. !52" is accomplished by
first changing the variable r, defined in the interval #0,L$, to
the variable x, defined in the interval #−1,+1$, which results

in the transformed functions "̄!x", Ḡ!x ,x!", and R̄!x!". We

expand the unknown solution "̄!x" in Chebyshev polynomi-
als

"̄!x" = &
n=0

N

anTn!x" , !55"

as was done in Eq. !37". Equation !52" leads to a matrix
equation in the coefficients an, as we will now show. The
coefficients an can be written as a column vector

a! = #a0,a1, . . . ,aN$T. !56"

The values of "̄!1i" at the support points 1i, which are the
zeros of TN+1, can also be expressed as a column vector

"! = #"̄!10","̄!11", . . . "̄!1N"$T, !57"

where the superscript T means transpose, and the relation
between a! and "! given in Eq. !39" is

a! = C−1"! , "! = Ca! . !58"

Another important relation concerns the integrals

,L!x" = (
−1

x

&!x!"dx! and ,R!x" = (
x

1

&!x!"dx!,

!59"

where the general function & is defined in the interval
#−1,1$, and the corresponding expansion coefficients 2n are
given by 2! =C−1&! . If ,L!x" and ,R!x" are expanded in
Chebyshev polynomials

,L!x" = &
n=0

N

3n
!L"Tn!x" and ,R!x" = &

n=0

N

3n
!R"Tn!x" ,

!60"

the expansion coefficients 3n can be expressed in terms of
the expansion coefficients 2 of & by means of the matrices
SL and SR, described near Eq. !48",

3! !L" = SL2! and 3! !R" = SR2! . !61"

The matrices C, C−1, SL, and SR can either be obtained from
Ref. 4 or Ref. 11. We use Eqs. !58" and !61" to write the
Chebyshev expansion of both sides of Eq. !52" as

1
#

a! = MIEMa! , !62"

where

MIEM =
1
2

C−1M3DRC . !63"

The factor of 1/2 in Eq. !63" comes from the transformation
of coordinates from r to x. The term L is canceled by the
!1 /L" term in Eq. !54". DR is the diagonal matrix that con-
tains the values of R!1i" along the main diagonal, and M3 is
given by

M3 = DGCSLC−1DF + DFCSRC−1DG. !64"

The first !second" term in Eq. !64" represents the first !sec-
ond" term in Eq. !54", DF=diag!F" and DG=diag!G" repre-
sent the diagonal matrices having the values of F!1i" and
G!1i" along the main diagonal, and the 1i are the N+1 sup-
port points described near Eq. !39".

The explanation for Eq. !62" is as follows. The matrix
MIEM in Eq. !63" is applied to the column vector a! , the C in
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Eq. !63" transforms the a! into the vector "! , and the factor DR
together with the factor DG in Eq. !64" transforms "! into
G! ! R! ! "! . !The symbol ! means that in G! ! R! each ele-
ment of the vector G! is multiplied by the corresponding el-
ement of the vector R! , and a new vector of the same length
is produced." The additional factor C−1 produces the expan-
sion coefficients of G! ! R! ! "! , and the matrix SL or SR trans-
forms these expansion coefficients to the expansion coeffi-
cients of the respective indefinite integrals. Equations
!60"–!64" represent the IEM for evaluating an integral equa-
tion.

After choosing a value for the number NIEM+1 of Cheby-
shev coefficients, a numerical value of the !NIEM+1"
* !NIEM+1" matrix !63" is obtained, for which the eigenval-
ues !1 /#n", n=1,2 , . . . ,NIEM+1 are calculated. The comput-
ing times for the Fourier method for both Nfourier=30 and 60
using the analytic expressions for the integrals needed to
obtain the elements of the matrix R is 0.91 s !on a personal
computer running Windows 7, using an Intel core TM 2
Quad, CPU Q 9950, running at 2.83 GHz, with 8.0 GB of
RAM". By comparison, the combined computing time for the
IEM for NIEM=30, 60, and 90 is 0.75 s. We conclude that the
integral equation method is comparable to or faster in speed
than the Fourier expansion method, even if the overlap inte-
grals !19" for the Fourier expansion method are known ana-
lytically. A disadvantage of the integral equation method for
this application is that some eigenvalues are spurious. The
occurrence of spurious eigenvalues can be recognized be-
cause they depend on the value of NIEM, and are not close to
any of the eigenvalues of Mfourier.

The accuracy of the integral equation and the Fourier ma-
trix methods, discussed in this section and in Sec. II B, re-
spectively, is illustrated in Fig. 10. The accuracy test is based
on a benchmark iterative method described in Sec. V, which
gives an accuracy of one part in 1011 for each of the eigen-
values, regardless of the value of the eigenvalue index n.
Figure 10 shows that the accuracy of the integral equation

matrix method is considerably greater than the Fourier ma-
trix method for low values of n. Figure 10 also shows that
the accuracy of both matrix methods depends sensitively on
the dimension N of their respective matrices M.

V. THE ITERATIVE METHOD

The iterative method was introduced by Hartree7 in the
1950s to calculate energy eigenvalues of the Schrödinger
equation for atomic systems. The method was adapted to the
use of the integral method 1 because of its predictable and
high accuracy, and applied to the energy eigenvalue of the
tenuously bound Helium-Helium dimer.8 The version we will
describe for finding the eigenvalues #n that multiply the in-
homogeneity function R is also suitable for finding the
eigenfunctions of more general Sturm–Liouville equations,
such as the Schrödinger equation.21

For a slightly incorrect value #1 of # there is a slightly
incorrect function "1 that obeys the equation

d2"1!r"
dr2 + #1R!r""1!r" = 0. !65"

This function does not satisfy the boundary conditions at
both r=0 and r=L, unless it has a discontinuity at some point
rI, in the interval #0,L$. The function "1 to the left of rI that
vanishes at r=0 is denoted as Y1!r", and to the right of rI the
function that vanishes at r=L is denoted as kZ1!r", where k is
a normalization factor chosen such that Y1!rI"=kZ1!rI". Both
functions satisfy Eq. !65" in their respective intervals and are
obtained by solving the integral equations

Y1!r" = F!r" − #1(
0

rI

G!r,r!"R!r!"Y1!r!"dr!, !0 0 r 0 rI" ,

!66"

and

Z1!r" = G!r" − #1(
rI

L

G!r,r!"R!r!"Z1!r!"dr!, !rI 0 r 0 L" .

!67"

These integral equations differ from Eq. !52" due to the pres-
ence of the driving term F or G, defined near Eq. !54". Be-
cause the second derivatives of the latter functions are zero,
their presence does not prevent Y1 and Z1 from satisfying Eq.
!65" in their respective domains.

The iteration from #1 to a value closer to the true # pro-
ceeds as follows. We multiply Eq. !68"

d2Y1!r"
dr2 + #1R!r"Y1!r" = 0 !0 0 r 0 rI" , !68"

by "!r" and multiply Eq. !4" by Y1!r". We then subtract one
from the other, integrate from r=0 to r=rI and find

(
0

rI

!Y1"" − ""Y1"dr!

= !Y1!" − "!Y1"rI
= !# − #1"(

0

rI

Y1"dr!. !69"

Here a prime denotes the derivative with respect to r. A
similar procedure applied to Z1 in the interval #rI ,L$ yields
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Fig. 10. Accuracy of the eigenvalues of Mfourier and MIEM for various values
of their dimension N*N. The value of N is indicated in parenthesis in the
legend. For the Fourier method, N is the number of basis functions &! used
to expand the Sturm–Liuoville eigenfunctions. For the integral equation,
method N is the number of Chebyshev polynomials used in the expansion,
which is also equal to the number of support points in the interval #0,L$.
The accuracy of the matrix eigenvalues is obtained by comparison with
Hartee’s iterative method, which is accurate to one part in 1011 for all ei-
genvalue indices.
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− k!Z1!" − "!Z1"rI
= !# − #1"(

0

rI

kZ1"dr!. !70"

If we add these two results and remember that kZ1=Y1 for
r=rI, and divide the result by "!rI"kZ1!rI", we obtain

# − #1 =
!Y!/Y − Z!/Z"rI

1
!Y1""rI

(
0

rI

Y1R"dr! +
1

!Z1""rI

(
rI

L

Z1R"dr!

.

!71"

Equation !71" is still exact, but the exact function " is
unknown. The iterative approximation consists of replacing
" in the first integral in the denominator by Y1, and by kZ1 in
the second integral, and of replacing "!rI" in the denomina-
tors of each integral by either Y1!rI" or by kZ1!rI". The result
is

#2 = #1 +
!Y!/Y − Z!/Z"rI

(
0

rI

Y1
2Rdr!/Y1

2!rI" + (
ri

L

Z1
2Rdr!/Z1

2!rI"
. !72"

In Eq. !72" # was replaced by #2 because it is a better
approximation to # than #1, and the normalization factor k
has canceled out. The iteration proceeds by replacing #1 in
Eqs. !65"–!72" by the new value #2, and by repeating the
process until the change in # is less than a pre-determined
value.

The derivatives in the numerator of Eq. !72" can be ob-
tained without loss of accuracy by making use of the deriva-
tives of Eqs. !66" and !67":

Y1!!r" = F!!r" +
#1

L
G!!r"(

0

r

F!r!"R!r!"Y1!r!"dr!

+
#1

L
F!!r"(

r

rI

G!r!"R!r!"Y1!r!"dr!, !73"

and

Z1!!r" = G!!r" +
#1

L
G!!r"(

rI

r

F!r!"R!r!"Z1!r!"dr!

+
#1

L
F!!r"(

r

L

G!r!"R!r!"Z1!r!"dr!, !74"

with the results at r=rI

Y1!!rI" = 1 −
#1

L
(

0

rI

r!R!r!"Y1!r!"dr!, !75"

and

Z1!!rI" = − 1 +
#1

L
(

rI

L

!L − r!"R!r!"Z1!r!"dr!. !76"

The dimensions of # are !−2, and the dimension of F, G,
Y, and Z are !, where ! represents a unit of length. As noted,
the derivatives with respect to r of the functions Y and Z are
not obtained as the difference between two adjoining posi-
tions, but rather as the known derivatives of F and G, to-
gether with integrals !73" and !74" over Y and Z. In the
integral equation formulation these integrals can be obtained

with the same precision as the calculation of Y, Z, or ".5

Hence there is no loss of accuracy for either the evaluation of
Eq. !72" or for the calculation of #, which can be set to one
part in 1011. However, it is important to start the iterations
with a value of # that lies within the range of convergence of
Eq. !72". These initial values can be obtained, for example,
from the eigenvalues of the matrix Mfourier or from the
method described in Ref. 8.

Some of the values for #n found using the iterative
method are listed in Table III. The initial values #1 for each
n are the results of the Fourier method with N=60. The it-
erations were stopped when the change #2−#1 became less
than 10−12 !usually three iterations were required", and tol
=10−11.

The error of the functions Y and Z is given, according to
Eq. !42", by the size of the high order Chebyshev expansion
parameters. For tol=10−11 their values are less than 10−11, as
is shown in Fig. 11. Because there is no loss of accuracy in
evaluating the various terms in Eq. !72", the error in the
iterated eigenvalues # is also given by Fig. 11. To achieve
this accuracy, the number N of Chebyshev polynomials used
for the spectral expansion of the functions Y and Z for the
solution of their respective integral equations was increased
adaptively. It was found that for n=1, N=16; for n=2–6,
N=24; for n=7–23, N=24; and for n=18–30, N=54. This
procedure of increasing N is different from the procedure
used in Ref. 8, where N was kept constant and the number

Table III. Eigenvalues of Eq. !4" obtained iteratively using Eq. !72", for the
purpose of providing benchmark values.

n #n n #n

1 1.61477559021*10−1 26 2.42220326385*10−4

2 4.06257259855*10−2 27 2.24611142229*10−4

3 1.81281029690*10−2 28 2.08854647313*10−4

4 1.02131986136*10−2 29 1.94699775697*10−4

5 6.54130338213*10−3 30 1.81936592475*10−4
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Fig. 11. The absolute value of the mean square average of the three last
Chebyshev coefficents in the expansions of the functions Y and Z. As dis-
cussed in the text, the error of the eigenvalues # is also given by the y-axis.
The number N of expansion Chebyshev polynomials was increased adap-
tively as the eigenvalue index n increased. The “jumps” in the values of
these errors is due to the transition from one value of N to a larger value.
The figure demonstrates that all inaccuracies stay below one part in 1011, in
agreement with the accuracy parameter tol specified to be 10−11.
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and size of the partitions in the domain of r was increased
adaptively. The latter method was required because of the
long-range behavior of the He–He wave functions.

VI. SUMMARY AND CONCLUSIONS

The main goal of this paper is to describe the Chebyshev
expansion method for solving integral equations, with the
hope that this method will be included in computational
physics courses. This expansion method converges rapidly
!spectrally" and complements the usual finite difference
methods. The example used for the application of this
method is the vibration of an inhomogeneous string in the
separation of variables formalism. The basis functions "n!r",
n=1,2 , . . ., form a complete Sturm–Liouville set, the calcu-
lation of which is performed by three methods. In the Fourier
expansion method the function " is expanded into a basis set
of sine waves, and the eigenfrequencies and expansion coef-
ficients for each "n are the eigenvalues and eigenvectors of
the matrix Mfourier. In the integral equation method the dif-
ferential equation for "n is transformed into an integral equa-
tion of the Lippmann–Schwinger type, the unknown function
is expanded into Chebyshev polynomials, and the expansion
coefficients are the eigenvectors of a matrix MIEM. The com-
parison of these two methods illustrates the differences and
advantages of each, especially their properties as a function
of the size of the expansion basis. In the third method !the
extended Hartree method" the differential equation for the
Sturm–Liouville eigenfunction is solved iteratively. This hy-
brid method combines Hartree’s iterative method of finding
eigenvalues of a differential equation with the highly accu-
rate integral equation method for providing the auxiliary
functions needed to implement the iterations. The advantage
of this hybrid method is that the precision of both the eigen-
function and the eigenvalue can be pre-determined, and no
eigenvalue calculation of big matrices is required. In the
present application the results of this method were accurate
to one part in 1011. Applications of these methods to other
problems, such as the solution of the Schrödinger equation,
or the heat propagation equation, or diffusion equations in
biology are possible.
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