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Abstract
A ladder network constructed by an elementary two-terminal network
consisting of a parallel resistor–inductor block in series with a parallel resistor–
capacitor block sometimes is said to have a non-dispersive dissipative response.
This special ladder network is created iteratively by replacing the elementary
two-terminal network in place of the resistors. In this paper, it will be
demonstrated that, in fact, non-dispersive dissipative response conclusion
of this special ladder network is not accurate for steady-state condition.
Furthermore, the voltage profile of this special ladder network exhibits a fractal
form called the Lévy C curve or Lévy dragon in a certain condition. Therefore,
this special ladder network may be called the Lévy ladder network. This ladder
network might be interesting for physics and electrical engineering students
and they may encounter when dealing with this network series and parallel
combinations of impedances.

1. Introduction

Ladder networks are often encountered in college education when dealing with series and
parallel combinations of impedances or admittances, such as in filter design and in wave
propagation on transmission lines [1]. These networks can also be related to continued
fractions in the theory of numbers, which is one of the oldest and the largest branches of pure
mathematics. Furthermore, continued fractions may have fractal nature. Therefore, study of
ladder networks has been the interest of many researchers from diverse disciplines. Physics
and electrical engineering students may encounter ladder networks in their curriculum and
hence, they as well as instructors may benefit by understanding these networks correctly.

Ladder networks are created by cascading elementary network blocks. An infinite number
of these blocks constitutes an infinite ladder network. Input impedance of such an infinite
ladder network can be calculated either by considering that the impedance does not change
when a bock is added to the ladder or by starting from the terminating end, cascading the blocks
and finally taking the block number to infinity. Both procedures will give the same input
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impedance if the latter converges [2, 3]. The latter assumes a steady state ac solution for the
input impedance. With this assumption, the input impedance of the network may not converge
under certain conditions. Therefore, one needs to be cautious when interpreting these two
solutions [4].

In this paper, a special ladder network constructed by an elementary two-terminal network
consisting of a parallel resistor–inductor block in series with a parallel resistor–capacitor block
will be investigated in terms of power dissipations and voltage profiles of the resistors at the
boundary of the network. This special ladder network is sometimes treated as having non-
dispersive dissipative response [5]. Reference [5] numerically iterated this special network
using recursive relation and concluded that regardless of the frequency and initializations,
starting with a small resistance at this boundary, the network generates a finite resistance. The
author calls the situation an anomaly because when infinitely iterated, it gives an essentially
reactive network and yet provides dissipation. Dissipation of the network will be tested
without using the recursive relation in this paper. Basically, the nodal equations for the ladder
network will be developed and voltages across the resistors will be used to find the total power
dissipation in the resistors. Furthermore, the voltage profile across the resistors leads to a
fractal form and the characteristic of the fractal form will also be discussed in the paper.

The rest of the paper is organized as follows. The following section presents the recursive
relation of the ladder network, investigates the fixed points and explains the stability of
these fixed points. The third section develops the node equations of the ladder network to
calculate the voltages across the resistors. The fourth section studies the dissipation and the
voltage profile of the resistors for different size ladder networks and for different values of
resistors. This section also probes into the similarity between the voltage profile of the ladder
network and the fractal called the Lévy C curve or Lévy dragon. Conclusions are given in the
last section.

2. Recursive relation and fixed points of the ladder network

Consider an elementary two-terminal network consisting of a parallel resistor–inductor block in
series with a parallel resistor–capacitor block as shown in figure 1(a). The terminal impedance
of the network in figure 1(a) will be equal to

√
L/C provided that the values of resistors in

the network are R =
√

L/C, independent of the driving source frequency. A ladder network
can be constructed by replacing the elementary two-terminal network in place of the resistors
iteratively. The network is shown in figure 1(b) after one replacement.

As an alternative to two-terminal representation, the network may be considered as a three-
port network having one input and two output ports as shown in figure 2. The output ports are
connected to the input ports of two three-port networks iteratively to create a ladder network.
Current–voltage relations of the ports can be written in matrix form and recursive relations
can be described by the multiplication of these matrices. Using port relations in matrix form
may complicate the problem unnecessarily. Therefore, the two-terminal representation of the
network illustrated in figure 1(a) will be used in this study.

A recursive relation can be written easily by using the two-terminal representation to
express the impedance of the ladder network. In figure 3, Zn+1 impedance of the two-terminal
network is expressed in terms of Zn as

Zn+1 = f (Zn) = iωLZn

iωL + Zn

+
Zn

1 + iωCZn

. (1)

Initial impedance is specified as Z0 = R in the recursive relation. By examining the recursive
relation given by (1), it can be easily verified that the input impedance of the ladder network
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Figure 1. The elementary two-terminal network (a) and the resulting network after one
iteration (b).

Three-Port
Network

In

Out 1

Out 2

Figure 2. The three-port network representation.
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Figure 3. Network to describe the recursive relation between Zn+1 and Zn.

will not converge if the initial impedance is purely imaginary or if its value is infinite (open
circuit). For Z0 = ∞ and ω = 1/

√
LC, the network is in the resonant condition for the driving

frequency and the input impedance is equal to zero.
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Recursion described by (1) has three fixed points: Z∗
1 = 0, Z∗

2 =
√

L/C and
Z∗

3 = −
√

L/C. Note that the fixed points are independent of the driving frequency. The
stability of the three fixed points can be examined by evaluating the derivative of the function
f (Z) at the fixed points. The derivative is given by

f ′(Z) = ω2L2

(ωL − iZ)2
− 1

(ωCZ − i)2
. (2)

The fixed point is stable for |f ′(Z)| < 1, unstable for |f ′(Z)| > 1 and neutral for |f ′(Z)| = 0.
The first fixed point Z∗

1 = 0 is unstable since |f ′(0)| = 2. The second and the third fixed
points are stable for nonzero finite values of L, C and ω as stated by

|f ′(±
√

L/C)| =
∣∣∣∣

LCω2 − 1

(
√

LCω ∓ i)2

∣∣∣∣ < 1. (3)

The stable fixed point Z∗
3 is negative valued and therefore, does not correspond to a passive

network.
In [5], equation (1) is numerically iterated for different initializations to show that the

network impedance converges to
√

L/C regardless of the frequency and initializations, and
concluded that starting with an arbitrarily small resistance at the boundary, the network
generates a finite resistance expressed by

√
L/C. Reference [5] describes this situation as an

anomaly because a dissipative response is achieved from a non-dispersive network component.
It points out the similarity of Nyquist–Johnson noise power generated by the two shunt resistors
combined to give a noise output at the terminal equal to that for a single resistance. Another
example is given in fluid turbulence. Energy fed at the large-scale eddy is cascaded away
progressively to smaller-scale eddies to ultimately dissipate at the distant smallest scale whose
dissipation rate is independent of the viscosity.

The recursive relation described by (1) does not reveal the dissipation across the resistors in
the network. Therefore, dissipated power from the resistors for steady state will be calculated
by using the nodal equations in the following section. Total power loss in the resistors will be
compared to the injected power of the source to test the conclusion reached by [5].

3. Steady-state nodal equations for the ladder network

The analysis of the ladder network in sinusoidal steady state (ac analysis) will be carried out
using the node-admittance matrix approach [6]. We will consider that the network is driven by
a sinusoidal current source connected at node 1. The ladder network after n recursive iterations
is shown in figure 4. This network has a total of m + 1 nodes including the reference node which
is labelled as zero. The other nodes are labelled from 1 to m as shown in figure 4. Let us call the
voltages of these nodes with respect to the reference node node voltages. Using Kirchhoff’s
laws, root-mean-square (rms) values of the node voltage vector V = [V1, V2, . . . , Vm]T can
be related to rms values of the node current source vector I = [I1, I2, . . . , Im]T through the
node-admittance matrix Y as

I = YV. (4)

For ac analysis, the entries of (4) are complex numbers in general. The node current source
vector has only one entry in the first row since the only current source I is connected to node
1 in the network as shown in figure 4. Node voltages can be found by solving m simultaneous
linear equations with complex coefficients expressed by

V = Y−1I = ZI, (5)
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Figure 4. Ladder network after n iterations.

where Z is the node impedance matrix. The first column of the node impedance matrix is
multiplied by the injected current at node 1 to determine the node voltages, that is, the node
voltages become Vi = Zi,1I . The voltages across resistors can be calculated by the difference
of node voltages given by Vi − Vi+1. The total power dissipation P of the resistors at the
boundary of the ladder network yields

P =
m∑

k=1

|Vk − Vk+1|2

R
= |I |2

m∑

k=1

|Zk,1 − Zk+1,1|2

R
, (6)

where Vm+1 = V0 = 0, which is the voltage of the reference node, and |I | is the magnitude
of current I. For infinitely large ladder network, the summation on the right side of (6) must
converge to

√
L/C for R > 0 since this is the positive fixed point of the network, that is,

lim
m→∞

m∑

k=1

|Zk,1 − Zk+1,1|2

R
=

√
L

C
. (7)

An analytical approach to show that equation (7) is correct may be difficult. Therefore, a
numerical investigation based on the node-admittance matrix will be used to reveal the voltage
profile of the resistors and to find the power dissipation of the network.

The node-admittance matrix can be constructed directly from the network. The Yk,k

admittance in the principal diagonal of Y is found by adding all admittances connected to
node k in the network. Off-diagonal admittance Yk,j is found by taking the negative value
of the connected total admittances between nodes k and j. The node-admittance matrix Y
is symmetrical around the principal diagonal and it is a square matrix of the size m × m.
One can develop an algorithm straightforwardly to form the node-admittance matrix from the
procedure described here for the ladder network in figure 4.

The node-admittance matrix of the network shown in figure 1(b) can be constructed as
an example. Let us consider that the admittance of the inductors is YL = 1/iωL and the
admittance of the capacitors is YC = iωC in figure 1(b). The number of nodes in the network is
equal to four excluding the reference node. Therefore, the size of the node-admittance matrix
equals 4 × 4 and the matrix is given by

Y =





2YL + 1/R −YL − 1/R −YL 0
−YL − 1/R YL + YC + 2/R −YC − 1/R 0

−YL −YC − 1/R 2YL + 2YC + 2/R −YL − 1/R

0 0 −YL − 1/R YL + YC + 2/R



 . (8)
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The number of nodes in the network will grow geometrically. For example, there are three
nodes for the elementary network given in figure 1(a) and five nodes for figure 1(b). In the
tenth iteration of the recursive relation of (1), the number of nodes in the network will increase
to 1025. Therefore, the size of the node-admittance matrix will get very large with a small
iteration number.

4. Dissipation, voltage profile and Lévy dragon

Numerical investigation of voltages and dissipated powers across the resistors for different
ladder network sizes can be easily done using the node-admittance approach described in the
previous section. In the node-admittance approach, the size of the matrix will double, whereas
the memory requirement will be quadrupled when the ladder network size is increased by one.
Therefore, the maximum size of the ladder network that can be numerically investigated will
be limited by the memory of the computer used. In this study, the maximum size of the ladder
network investigated is 10 and therefore, the size of the node-admittance matrix is 1024 ×
1024, that is, m = 2n.

A program is written to construct the node-admittance matrix automatically. Once the
node-admittance matrix is constructed, the inverse is taken and the complex valued node
voltages are found. Certainly, node voltages will be a function of injected current to node 1
and for simplicity, the injected current is chosen to be 1 A. Therefore, the voltage at node 1
will converge to

√
L/C for sufficiently large ladder network sizes. This value is the fixed

point of the ladder network and if the value of the resistors is chosen to be that value, for every
size of the network, voltage at node 1 will be equal to

√
L/C.

In figure 5, for the fixed point of R =
√

L/C, voltages across the resistors are drawn in the
complex plane to reveal the voltage profile of different size ladder networks for L = 1 H, C =
1 F, R = 1 ", ω = 1 rad s−1. Figure 5(a) illustrates the voltage profile across the two resistors
for the ladder network of size one, n = 1, shown in figure 1(a). There are two resistors of 1 "

and the voltage across each resistor is drawn in a complex plane as shown in figure 5(a). The
resistor connected between node 2 and the reference node has a voltage given by 0.5 − i0.5 V
and the resistor connected between node 1 and node 2 has a voltage of 0.5 + i0.5 V. In each
resistor, power dissipation is 0.5 W. Thus, the total power dissipation of the two resistors is
equal to 1 W. The voltage profile of the resistors when the size of the network is increased to
2 (n = 2) is shown in figure 5(b). Each of the four resistors dissipates 0.25 W. Figures 5(c)
and (d) show the voltage profiles of the ladder networks of sizes 4 and 8, respectively. For
the numerical values used in this example, voltage magnitude across each resistor is identical,
causing a symmetrical picture in the vertical direction. For identical voltage magnitudes, the
power dissipation of each resistor in the network can be calculated by 1/2n. The voltage
magnitudes across the resistors will be different in general and the voltage profiles can
be experimented with different frequencies of driving current source of 1 A. For example,
when the frequency is increased, the voltage magnitudes will decrease across the resistors in
figure 4 when progressed from node 1 to the reference node because inductors dominate the
upper part of the ladder network. Conversely, the voltage magnitudes will increase from node
1 to the reference node when the frequency is reduced. In both cases, symmetrical structure of
the voltage profile no longer exists. However, the total power dissipation in the ladder network
will not change.

The effect of the values of the resistors on the voltage profile in the network is also
studied numerically for n = 10. The values used for the study are the same as the previous
example, that is, L = 1 H, C = 1 F, ω = 1 rad s−1. The values of the resistors connected at
the boundary are changed between 0.01 " and 10 " to observe voltage profiles. Figure 6(a)
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Figure 5. Voltage profile at the resistor terminals for different size ladder networks (L = 1 H, C =
1 F, R = 1 ",ω = 1 rad s−1).

shows the voltage profile for R = 0.01 ". The voltage magnitude in each resistor is small
causing smoother voltage profile. Increasing the resistors to 0.1 " will change the profile as
seen in figure 6(b). Figures 6(c) and (d) show the voltage profile of the resistors connected at
the boundary for 1 " and for 10 ", respectively. When the values of the resistors increase,
the voltage magnitudes across the resistors also increase. But, the power dissipation in each
resistor does not change and it is equal to approximately 0.976 563 mW. For the total of 1024
resistors, power dissipation adds up to 1 W. This result may be interesting for the ladder
network because whatever the values of the resistors used, the network adjusts the voltage
across resistors so that the power dissipation stays constant. Changing the driving source
frequency and/or the values of inductors and capacitors may cause different voltages across
the resistors. However, the total dissipated power from the network will be equal to the input
power from the source in steady state signifying that the network does not violate the first law
of thermodynamic as one might expect.

Interestingly, the voltage profile across the resistors shown in figures 5 and 6(c) can also be
developed without solving the algebraic voltage–current equations. Fractal-like forms similar
to figures 5 and 6(c) can be described with L-systems (Lindenmayer systems, [7]). L-systems
are a mathematical formulation proposed by Aristed Lindenmayer in 1968 for the study of
theory of biological development. Recently, L-systems have been used for the generation of
fractals and realistic modelling of plants [8]. The recursive nature of the L-systems’ rules
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Figure 6. Voltage profile at the resistor terminals for n = 10 and L = 1 H, C = 1 F, ω =
1 rad s−1.

leads to self-similarity. For example, figure 5(a) can be created by replacing the straight line
by the other two sides of a right-angled isosceles triangle built on it. Applying the same
rule to the each line segment created will lead to figure 5(b), applying the rule four times to
figure 5(c), eight times to figure 5(d), and ten times to figure 6(c). The fractal image created
by this rule is actually called the Lévy C curve or Lévy dragon [9]. The Lévy dragon is a
well-known fractal introduced by Paul Lévy in 1938. In the Lévy dragon, line segments in
each stage will be smaller than the original (previous) by a factor of

√
2. The length of the lines

will increase by 2/
√

2 from the previous stage and therefore, the total length of the line after
n stages will be equal to (2/

√
2)n. Duvall and Keesling proved that the Hausdorff dimension

of the boundary of the Lévy fractal is rigorously greater than one and they estimated the
dimension as 1.934 007 183 [10]. A detailed study of general families of self-similar curves
of the Lévy dragon can be found in [11].

5. Conclusion

A study of a special ladder network constructed by an elementary two-terminal network
consisting of a parallel resistor–inductor block in series with a parallel resistor–capacitor block
is done to reveal voltage profile and dissipated power of the connected resistors. By using the
nodal admittance approach, it is shown numerically that for steady state, the dissipated power
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from the resistors approximates to
√

L/C for sufficiently large ladder networks no matter
what the values (excluding zero and infinite) of the resistors are. Therefore, non-dispersive
dissipative response of the network is not true in steady state and otherwise, the ladder network
will violate the first law of thermodynamics.

It is shown that the voltage profile of the resistors of the ladder network in a complex plane
exhibits a fractal form. With appropriate parameters, voltage profile becomes symmetrical
and reveals a well-known fractal called the Lévy C curve or Lévy dragon. The Lévy C curve
is introduced by Paul Lévy in 1938. Therefore, it may be appropriate to name this special
ladder network as the Lévy ladder network or circuit.
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http://arxiv.org/abs/math.DS/9907145/
[11] Bailey S, Kim T and Strichartz R S 2002 Inside the Lévy dragon Am. Math. Mon. 109 689–703


