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Abstract
We present an introduction to and a tutorial on the properties of the recently
discovered ideal circuit element, a memristor. By definition, a memristor M
relates the charge q and the magnetic flux φ in a circuit and complements a
resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical
circuits. The properties of these three elements and their circuits are a part
of the standard curricula. The existence of the memristor as the fourth
ideal circuit element was predicted in 1971 based on symmetry arguments,
but was clearly experimentally demonstrated just last year. We present the
properties of a single memristor, memristors in series and parallel, as well as
ideal memristor–capacitor (MC), memristor–inductor (ML) and memristor–
capacitor–inductor (MCL) circuits. We find that the memristor has hysteretic
current–voltage characteristics. We show that the ideal MC (ML) circuit
undergoes non-exponential charge (current) decay with two time scales and
that by switching the polarity of the capacitor, an ideal MCL circuit can be
tuned from overdamped to underdamped. We present simple models which
show that these unusual properties are closely related to the memristor’s internal
dynamics. This tutorial complements the pedagogy of ideal circuit elements
(R,C and L) and the properties of their circuits, and is aimed at undergraduate
physics and electrical engineering students.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The properties of basic electrical circuits, constructed from three ideal elements, a resistor, a
capacitor, an inductor and an ideal voltage source v(t) are a standard staple of physics and
engineering courses. These circuits show a wide variety of phenomena such as the exponential
charging and discharging of a resistor–capacitor (RC) circuit with time constant τRC = RC,
the exponential rise and decay of the current in a resistor–inductor (RL) circuit with time

0143-0807/09/040661+15$30.00 c© 2009 IOP Publishing Ltd Printed in the UK 661



662 Y N Joglekar and S J Wolf

d/dt

d/dt

C

L

RM

dvφ

dq di

d

Figure 1. Relations between four variables of basic electrical circuit theory: the charge q, current
i, voltage v and the magnetic flux φ. Three well-known ideal circuit elements R,C and L are
associated with pairs (dv, di), (dq, dv) and (dφ, di), respectively. The top (bottom) horizontal pair
is related by Lenz’s law (definition). This leaves the pair (dφ, dq) unrelated. Leon Chua postulated
that, due to symmetry, the fourth ideal element (memristor) that relates this pair, dφ = M dq, must
exist.

constant τRL = L/R, the non-dissipative oscillations in an inductor–capacitor (LC) circuit
with frequencyωLC = 1/

√
LC as well as resonant oscillations in a resistor–capacitor–inductor

(RCL) circuit induced by an alternating-current (ac) voltage source with frequency ω ∼ ωLC

[1]. The behaviour of these ideal circuits is determined by Kirchoff’s current law that follows
from the continuity equation and Kirchoff’s voltage law. We remind the reader that Kirchoff’s
voltage law follows from Maxwell’s second equation only when the time dependence of the
magnetic field created by the current in the circuit is ignored,

∮
E · dl = 0 where the line

integral of the electric field E is taken over any closed loop in the circuit [2]. The study of
elementary circuits with ideal elements provides us with a recipe to understand real-world
circuits where every capacitor has a finite resistance, every battery has an internal resistance
and every resistor has an inductive component; we assume that the real-world circuits can be
modelled using only the three ideal elements and an ideal voltage source.

An ideal capacitor is defined by the single-valued relationship between the charge q(t)

and the voltage v(t) via dv = dq/C(q). Similarly, an ideal resistor is defined by a single-
valued relationship between the current i(t) and the voltage v(t) via dv = R(i) di, and an
ideal inductor is defined by a single-valued relationship between the magnetic flux φ(t) and
the current i(t) via dφ = L(i) di. These three definitions provide three relations between the
four fundamental constituents of the circuit theory, namely the charge q, current i, voltage v

and magnetic flux φ (see figure 1). The definition of current, i = dq/dt , and the Lenz’s law,
v = +dφ/dt , give two more relations between the four constituents. (We define the flux such
that the sign in the Lenz law is positive.) These five relations, shown in figure 1, raise a natural
question: Is there an ideal element that relates the charge q(t) and magnetic flux φ(t)? Based
on this symmetry argument, in 1971 Chua postulated that a new ideal element defined by the
single-valued relationship dφ = M(q) dq must exist. He called this element memristor, M,
short for memory resistor [3]. This ground-breaking hypothesis meant that the trio of ideal
circuit elements (R,C,L) were not sufficient to model a basic real-world circuit (that may
have a memristive component as well). In 1976, Chua and Kang extended the analysis further
to memristive systems [4, 5]. These seminal papers studied the properties of a memristor, the
fourth ideal circuit element, and showed that diverse systems such as thermistors, Josephson
junctions and ionic transport in neurons, described by the Hodgkins–Huxley model, are special
cases of memristive systems [3–5].
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Despite the simplicity and the soundness of the symmetry argument that predicts the
existence of the fourth ideal element, experimental realization of a quasi-ideal memristor—
defined by the single-valued relationship dφ = M(q) dq—remained elusive1. In 2008, Strukov
and co-workers [9] created, using a nanoscale thin-film device, the first realization of a
memristor. They presented an elegant physical model in which the memristor is equivalent
to a time-dependent resistor whose value at time t is linearly proportional to the amount of
charge q(t) that has passed through it before. This equivalence follows from the memristor’s
definition and Lenz’s law, dφ = M(q) dq ⇔ v = M(q)i. It also implies that the memristor
value—memristance—is measured in the same units as the resistance.

In this paper, we present the properties of basic electrical circuits with a memristor.
For the most part, this theoretical investigation uses Kirchoff’s law and Ohm’s law. In the
following section, we discuss the memristor model presented in [9] and analytically derive its
i–v characteristics. Section 3 contains theoretical results for ideal MC and ML circuits. We use
the linear-drift model, presented in [9], to describe the dependence of the effective resistance
of the memristor (memristance) on the charge that has passed through it. This simplification
allows us to obtain analytical closed-form results. We show that the charge (current) decay
‘time-constant’ in an ideal MC (ML) circuit depends on the polarity of the memristor. Section 4
is intended for advanced students. In this section, we present models that characterize the
dependence of the memristance on the dopant drift inside the memristor. We show that the
memristive behaviour is amplified when we use models that are more realistic than that used
in preceding sections. In section 5 we discuss an ideal MCL circuit. We show that depending
on the polarity of the memristor, the MCL circuit can be overdamped or underdamped, and
thus allows far more tunability than an ideal RCL circuit. Section 6 concludes the tutorial with
a brief discussion. This tutorial adds to the pedagogy of undergraduate physics and electrical
engineering.

2. A single memristor

We start this section with the elegant model of a memristor presented in [9]. It consisted
of a thin film (5 nm thick) with one layer of insulating TiO2 and oxygen-poor TiO2−x each,
sandwiched between platinum contacts [10]. The oxygen vacancies in the second layer
behave as charge +2 mobile dopants. These dopants create a doped TiO2 region, whose
resistance is significantly lower than the resistance of the undoped region. The boundary
between the doped and undoped regions, and therefore the effective resistance of the thin film,
depends on the position of these dopants. It, in turn, is determined by their mobility2 µD

(∼ 10−10 cm2 V−1 s−1) [9] and the electric field across the doped region. Since it is not
trivial to obtain the microscopic dopant density profile, we characterize the time evolution of
this profile by the average dopant velocity. Figure 2 shows a schematic of a memristor of size
D (D ∼ 10 nm) modelled as two resistors in series, the doped region with size w and the
undoped region with size (D − w). The effective resistance of such a device is

M(w) = w

D
RON +

(
1 − w

D

)
ROFF, (1)

where RON (∼ 1 k$) [9] is the resistance of the memristor if it is completely doped and ROFF

is its resistance if it is undoped. Although equation (1) is valid for arbitrary values of RON

1 Over the last two decades, devices with programmable variable resistance, also called memristors, have been
fabricated [6–8]. They show hysteretic i–v characteristics, but do not discuss the defining property of a memristor, the
invertible relationship between the charge and the magnetic flux. The interplay between electronic and ionic transport
in these samples is non-trivial, and none of them have presented a simple physical picture similar to that in [9].
2 For an introduction to semiconductors and mobility, see chapters 42 and 25 of the second part of [1].
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Figure 2. (a) Schematic of a memristor of length D as two resistors in series. The doped region
(TiO2−x ) has resistance RONw/D and the undoped region (TiO2) has resistance ROFF(1 −w/D).
The size of the doped region, with its charge +2 ionic dopants, changes in response to the applied
voltage and thus alters the effective resistance of the memristor. (b) Two memristors with the same
polarity in series. d and ud represent the doped and undoped regions, respectively. In this case,
the memristive effect is retained because doped regions in both memristors simultaneously shrink
or expand. (c) Two memristors with opposite polarities in series. The net memristive effect is
suppressed.

and ROFF, experimentally, the resistance of the doped TiO2 film is significantly smaller than
the undoped film, ROFF/RON ∼ 102 % 1 and therefore %R = (ROFF − RON) ≈ ROFF.
In the presence of a voltage v(t), the current in the memristor is determined by Kirchoff’s
voltage law v(t) = M(w)i(t). The memristive behaviour of this system is reflected in the
time dependence of size of the doped region w(t). In the simplest model—the linear-drift
model—the boundary between the doped and undoped regions drifts at a constant speed vD

given by

dw

dt
= vD = η

µDRON

D
i(t), (2)

where we have used the fact that a current i(t) corresponds to a uniform electric field
RONi(t)/D across the doped region. Since the (oxygen vacancy) dopant drift can either
expand or contract the doped region, we characterize the ‘polarity’ of a memristor by
η = ±1, where η = +1 corresponds to the expansion of the doped region. We note that
‘switching the memristor polarity’ means reversing the battery terminals, or the ± plates of a
capacitor (in an MC circuit) or reversing the direction of the initial current (in an ML circuit).
Equations (1) and (2) are used to determine the i–v characteristics of a memristor. Integrating
equation (2) gives

w(t) = w0 + η
µDRON

D
q(t) = w0 + η

Dq(t)

Q0
, (3)

where w0 is the initial size of the doped region. Thus, the width of the doped region w(t)

changes linearly3 with the amount of charge that has passed through it. Q0 = D2/µDRON

is the charge that is required to pass through the memristor for the dopant boundary to move
through distance D (typical parameters [9] imply Q0 ∼ 10−2 C). It provides the natural scale
for charge in a memristive circuit. Substituting this result into equation (1) gives

M(q) = R0 − η
%Rq

Q0
, (4)

3 The linear-drift model is valid only when 0 ! w(t) ! D for all t. This constraint provides limits on the flux φ,
the initial capacitor charge q0 or the dc voltage v0 and the initial current i0. We compare linear and nonlinear dopant
drift models in section 4.
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where R0 = RON(w0/D) + ROFF(1 − w0/D) is the effective resistance (memristance) at
time t = 0. Equation (4) shows explicitly that the memristance M(q) depends purely on the
charge q that has passed through it. Combined with v(t) = M(q)i(t), equation (4) implies
that the model presented here is an ideal memristor. (We recall that v = M(q)i is equivalent
to dφ = M dq.) The prefactor of the q-dependent term is proportional to 1/D2 and becomes
increasingly important when D is small. In addition, for a given D, the memristive effects
become important only when %R % R0. Now that we have discussed the memristor model
from [9], in the following paragraphs we obtain analytical results for its i–v characteristics.

For an ideal circuit with a single memristor and a voltage supply, Kirchoff’s voltage law
implies

(
R0 − η

%Rq(t)

Q0

)
dq

dt
= d

dt

(
R0q − η

%Rq2

2Q0

)
= v(t). (5)

The solution of this equation, subject to the boundary condition q(0) = 0, is

q(t) = Q0R0

%R

[

1 −
√

1 − η
2%R
Q0R2

0

φ(t)

]

, (6)

i(t) = v(t)

R0

1
√

1 − 2η%Rφ(t)/Q0R2
0

= v(t)

M(q(t))
, (7)

where φ(t) =
∫ t

0 dτv(τ ) is the magnetic flux associated with the voltage v(t).
Equations (6) and (7) provide analytical results for i–v characteristics of an ideal memristor
circuit. Equation (6) shows that the charge is an invertible function of the magnetic flux
[3, 4] consistent with the defining equation dφ = M(q) dq. Equation (7) shows that i = 0
if and only if v = 0. Therefore, unlike an ideal capacitor or an inductor, the memristor is
a purely dissipative element [3]. For an ac voltage v(t) = v0 sin(ωt), the magnetic flux is
φ(t) = v0[1 − cos(ωt)]/ω. Although v(π/ω − t) = v(t),φ(π/ω − t) '= φ(t); therefore, it
follows from equation (7) that the current i(v) will be a multi-valued function of the voltage v.
Note that even though the voltage has a single Fourier frequency component at ω, the current
i(t) has multiple Fourier components. It also follows that since φ ∝ 1/ω, the memristive
behaviour is dominant only at low frequencies ω ! ω0 = 2π/t0. Here t0 = D2/µDv0 is the
time that the dopants need to travel distance D under a constant voltage v0. t0 and ω0 provide
the natural time and frequency scales for a memristive circuit (typical parameters [9] imply
t0 ∼ 0.1 ms and ω0 ∼ 50 KHz). We emphasize that equation (6) is based on the linear-drift
model, equation (2), and is valid only when the charge flowing through the memristor is less
than qmax(t) = Q0(1 − w0/D) when η = +1 or qmax(t) = Q0w0/D when η = −1. It is
easy to obtain a diversity of i–v characteristics using equations (6) and (7), including those
presented in [9, 10] by choosing appropriate functional forms of v(t). Figure 3 shows the
theoretical i–v curves for v(t) = v0 sin(ωt) for ω = 0.5ω0 (red solid), ω = ω0 (green dashed)
and ω = 5ω0 (blue dotted). In each case, the high initial resistance R0 leads to the small
slope of the i–v curves at the beginning. For ω " ω0 as the voltage increases, the size of the
doped region increases and the memristance decreases. Therefore, the slope of the i–v curve
on the return sweep is large, creating a hysteresis loop. The size of this loop varies inversely
with the frequency ω. At high frequencies, ω = 5ω0, the size of the doped region barely
changes before the applied voltage begins the return sweep. Hence the memristance remains
essentially unchanged and the hysteretic behaviour is suppressed. The inset in figure 3 shows
the theoretical q–φ curve for ω = 0.5ω0 that follows from equation (6).
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Figure 3. Theoretical i–v characteristics of a memristor with applied voltage v(t) = v0 sin(ωt)
for ω = 0.5ω0 (red solid), ω = ω0 (green dashed) and ω = 5ω0 (blue dotted). The memristor
parameters are w0/D = 0.5 and ROFF/RON = 20. The unit of resistance is RON, the unit of
voltage is v0 and the unit of current is I0 = Q0/t0. We see that the hysteresis is pronounced for
ω ! ω0 and suppressed when ω % ω0. The inset is a typical q–φ graph showing that the charge q
is an invertible function of the flux φ. The unit of flux φ0 = v0t0 = D2/µD is determined by the
memristor properties alone (typical parameters [9] imply φ0 = 10−2 Wb).

Thus, a single memristor shows a wide variety of i–v characteristics based on the
frequency of the applied voltage. Since the mobility of the (oxygen vacancy) dopants is
low, memristive effects are appreciable only when the memristor size is nanoscale. Now,
we consider an ideal circuit with two memristors in series (figure 2). It follows from
Kirchoff’s laws that if two memristors M1 and M2 have the same polarity, η1 = η2,
they add like regular resistors, M(q) = (R01 + R02) − η(%R1 + %R2)q(t)/Q0 whereas
when they have opposite polarities, η1η2 = −1, the q-dependent component is suppressed,
M(q) = (R01 + R02) − η(%R1 − %R2)q(t)/Q0. The fact that memristors with the same
polarities add in series leads to the possibility of a superlattice of memristors with micron
dimensions instead of nanoscale dimensions. We emphasize that a single memristor cannot
be scaled up without losing the memristive effect because the relative change in the size of
the doped region decreases with scaling. A superlattice of nanoscale memristors, on the other
hand, will show the same memristive effect when scaled up. We leave the problem of two
memristors in parallel to the reader.

These non-trivial properties of an ideal memristor circuit raise the following question:
What are the properties of basic circuits with a memristor and a capacitor or an inductor? (A
memristor–resistor circuit is trivial.) We will explore this question in the subsequent sections.

3. Ideal MC and ML circuits

Let us consider an ideal MC circuit with a capacitor having an initial charge q0 and no voltage
source. The effective resistance of the memristor is determined by its polarity (whether the
doped region increases or decreases), and since the charge decay time-constant of the MC
circuit depends on its effective resistance, the capacitor discharge will depend on the memristor
polarity. Kirchoff’s voltage law applied to an ideal MC circuit gives

Mc(q(t))
dq

dt
+

q

C
= 0, (8)
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Figure 4. Theoretical q–t characteristics of an ideal MC circuit. The memristor parameters are
w0/D = 0.5 and ROFF/RON = 20. The initial charge on the capacitor is q0/Q0 = 0.45 <
(1 −w0/D) to ensure the validity of the linear-drift model and C/C0 = 1. The unit of capacitance
is C0 = Q0/v0 = t0/RON. We see that when η = +1 (red solid), the capacitor charge in the MC
circuit decays about twice as fast as when η = −1 (green dashed). The central blue dotted plot
shows the exponential charge decay of an RC circuit with the same initial resistance R0. The inset
shows the time evolution of the boundary between the doped and undoped regions when η = +1
(red solid) and η = −1 (green dashed), and confirms that the linear-drift model is valid.

where q(t) is the charge on the capacitor. We emphasize that the q-dependence of the
memristance here is Mc(q) = R0 − η%R(q0 − q)/Q0 because if q is the remaining
charge on the capacitor, then the charge that has passed through the memristor is (q0 − q).
Equation (8) is integrated by rewriting it as dq/dt = −q/(a + bq), where a = C(R0 −
η%Rq0/Q0) and b = ηC%R/Q0. We obtain the following implicit equation:

q(t) exp
[
η%Rq(t)

RF Q0

]
= q0 exp

[
− t

RF C

]
exp

[
η%Rq0

RF Q0

]
, (9)

where RF = R0 − η%Rq0/Q0 is the memristance when the entire charge q0 has
passed through the memristor. A small t-expansion of equation (9) shows that the initial
current i(0) = q0/R0C is independent of the memristor polarity η, and the large-t
expansion shows that the charge on the capacitor decays exponentially, q(t → ∞) =
q0 exp(−t/RF C) exp(η%Rq0/RF Q0). In the intermediate region, the naive expectation
q(t) = q0 exp[−t/M(w(t))C] is not the self-consistent solution of equation (9). Therefore,
although a memristor can be thought of as an effective resistor, its effect in an MC circuit is
not captured by merely substituting its time-dependent value in place of the resistance in an
ideal RC circuit. Qualitatively, since the memristance decreases or increases depending on its
polarity, we expect that when η = +1 the MC circuit will discharge faster than an RC circuit
with the same resistance R0. This RC circuit, in turn, will discharge faster than the same MC
circuit when η = −1. Figure 4 shows the theoretical q–t curves obtained by (numerically)
integrating equation (8). These results indeed fulfil our expectations. We note that
equation (9), obtained using the linear-drift model, is valid for q0 " Q0(1 − w0/D) when
η = +1 which guarantees that the final memristance RF # RON is always positive. The inset
shows the time evolution of the size of the doped region w(t) obtained using equation (3) and
confirms the applicability of the linear-drift model. We remind the reader that changing the
polarity of the memristor can be accomplished by exchanging the ± plates of the fully charged
capacitor.
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It is now straightforward to understand an ideal MC circuit with a direct current (dc)
voltage source v0 and an uncharged capacitor. This problem is the time-reversed version of
an MC circuit with the capacitor charge q0 = v0C and no voltage source. The only salient
difference is that in the present case, the charge passing through the memristor is the same
as the charge on the capacitor. Using Kirchoff’s voltage law we obtain the following implicit
result,

q(t) = v0C

[
1 − exp

(
− t

RF C
+
η%Rq(t)

RF Q0

)]
, (10)

where RF = R0 − η%R(v0C)/Q0 is the memristance when t → ∞. As before,
equation (10) shows that when eta = +1(η = −1), the ideal MC circuit charges faster
(slower) than an ideal RC circuit with the same resistance R0. In particular, the capacitor
charging time for η = +1 (the doped region widens and the memristance reduces with time)
decreases steeply as the dc voltage v0 → Q0(1 − w0/D)/C, the maximum voltage at which
the linear-drift model is applicable.

Now we turn our attention to an ML circuit. Ideal RC and RL circuits are described
by the same differential equation (dq/dt + q/τRC = 0; di/dt + i/τRL = 0) with the same
boundary conditions. Therefore, they have identical solutions [2] q(t) = q0 exp(−t/τRC) and
i(t) = i0 exp(−t/τRL). As we will see below, this equivalence breaks down for MC and ML
circuits. Let us consider an ideal ML circuit with initial current i0. Kirchoff’s voltage law
implies that

Li
di

dq
+

(
R0 − η

%Rq(t)

Q0

)
i(t) = 0. (11)

The solution of this equation above is given by = Aq2 − Bq + i0 = (q − q+)(q − q−) where

A = η%R/2Q0L,B = R0/L and q± = (Q0R0/%R)
[
1 ±

√
1 − 2η%RLi0/Q0R2

0

]
are the

two real roots of i(q) = 0. We integrate the implicit result using partial fractions and get

q(t) = 2Q0Li0

%R

[
et/τML − 1

q+ et/τML − q−

]
, (12)

where τML = L/R0

√
1 − 2η%RLi0/Q0R2

0 is characteristic time associated with the ML
circuit. The current i(t) in the circuit is

i(t) = i0

(
2Q0L

%RτML

)2 et/τML

(q+ et/τML − q−)2
. (13)

Equations (12) and (13) provide the set of analytical results for an ideal ML circuit. At small-t
equation (13) becomes i(t) = i0(1 − tR0/L), whereas the large-t expansion shows that the
current decays exponentially, i(t → ∞) = i0(2Q0L/q+%RτML)2 exp(−t/τML). Since τML

depends on the polarity of the memristor, τML(η = +1) > τML(η = −1), the ML circuit with
η = +1 discharges slower than its RL counterpart whereas the same ML circuit with η = −1
discharges faster than the RL counterpart. Figure 5 shows the theoretical i–t curves for an ML
circuit obtained from equation (13); these results are consistent with our qualitative analysis.
Note that the net charge passing through the memristor in an ML circuit is q(t → ∞) = q−(i0).
Therefore, an upper limit on initial current i0 for the validity of the linear-drift model is given
by q−(i0) " Q0w0/D (η = −1). As in the case of an ideal MC circuit charge, the ML circuit
current decays steeply as i0 approaches this upper limit.

Figures 4 and 5 suggest that ideal MC and ML circuits have a one-to-one correspondence
analogous to the ideal RC and RL circuits. Therefore, it is tempting to think that the solution
of an ideal ML circuit with a dc voltage v0 is straightforward. (In a corresponding RL circuit,
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Figure 5. Theoretical i–t characteristics of an ideal ML circuit. The memristor parameters are
w0/D = 0.5 and ROFF/RON = 30. The initial current in the circuit is small, i0/I0 = 0.135, to
ensure the validity of the linear-drift model that breaks down when i0/I0 > 0.140 and L/L0 = 30.
The unit of inductance is L0 = φ0/I0 = t0RON. We see that when η = +1 (red solid), the current
in the ML circuit decays slower than when η = −1 (green dashed). The central blue dotted plot
shows the exponential current decay of an RL circuit with the same initial resistance R0. The inset
shows the time evolution of the boundary between the doped and undoped regions when η = +1
(red solid) and η = −1 (green dashed), and confirms that the linear-drift model is valid.

the current asymptotically approaches v0/R for t % τRL = L/R). The relevant differential
equation obtained using Kirchoff’s voltage law,

L
di

dt
+

(
R0 − η

%Rq(t)

Q0

)
i(t) = v0, (14)

shows that it is not the case. In an ML circuit, as the current i(t) asymptotically approaches
its maximum value, it can pump an arbitrarily large charge q(t) =

∫ t

0 i(τ ) dτ through the
memristor. Hence, for any nonzero voltage, no matter how small, the linear-drift model breaks
down at large times when w(t) = w0 + ηDq(t)/Q0 exceeds D (η = +1) or becomes negative
(η = −1). This failure of the linear-drift model reflects the fact that when the (oxygen
vacancy) dopants approach either end of the memristor, their drift is strongly suppressed by
a non-uniform electric field. Thus, unlike the ideal RL circuit, the steady-state current in an
ideal ML circuit is not solely determined by the resistance R0 but also by the inductor. In the
following section, we present more realistic models of the dopant drift that take into account
its suppression near the memristor boundaries.

4. Models of nonlinear dopant drift

The linear-drift model used in preceding sections captures the majority of salient features of a
memristor. It makes the ideal memristor, MC, and ML circuits analytically tractable and leads
to closed-form results such as equations (7), (9) and (13). We leave it as an exercise for the
reader to verify that these results reduce to their well-known R, RC and RL counterparts in
the limit when the memristive effects are negligible, %R → 0. The linear-drift model suffers
from one serious drawback: it does not take into account the boundary effects. Qualitatively,
the boundary between the doped and undoped regions moves with speed vD in the bulk of the
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memristor, but this speed is strongly suppressed when it approaches either edge, w ∼ 0 or
w ∼ D. We modify equation (2) to reflect this suppression as follows [9]:

dw

dt
= η

µDRON

D
i(t)F

(w

D

)
. (15)

The window function F(x) satisfies F(0) = F(1) = 0 to ensure no drift at the boundaries.
The function F(x) is symmetric about x = 1/2 and monotonically increasing over the interval
0 " x " 1/2, 0 " F(x) " 1 = F(x = 1/2). These properties guarantee that the difference
between this model and the linear-drift model, equation (2), vanishes in the bulk of the
memristor as w → D/2. Motivated by this physical picture, we consider a family of window
functions parameterized by a positive integer p, Fp(x) = 1 − (2x − 1)2p. Note that Fp(x)

satisfies all the constraints for any p. The equation Fp(x) = 0 has 2 real roots at x = ±1 and
2(p − 1) complex roots that occur in conjugate pairs. As p increases Fp(x) is approximately
constant over an increasing interval around x = 1/2 and as p → ∞, Fp(x) = 1 for all x
except at x = 0, 1. (For example, 1−Fp=16(x) # 0.1 only for x " 0.035 and 1−x " 0.035.)
Thus, Fp(x) with large p provides an excellent nonlinear generalization of the linear-drift
model without suffering from its limitations. We note that at finite p, equation (15) describes
a memristive system [4, 9] that is equivalent to an ideal memristor [3, 9] when p → ∞ or
when the linear-drift approximation is applicable. It is instructive to compare the results for
large p with those for p = 1, Fp=1(x) = 4x(1 − x), when the window function imposes a
nonlinear drift over the entire region 0 " w " D [9]. For p = 1, it is possible to integrate
equation (15) analytically and we obtain

wp=1(q) = w0
D exp(4ηq(t)/Q0)

D + w0[exp(4ηq(t)/Q0) − 1]
. (16)

As expected, when the suppression at the boundaries is taken into account, the size of the
doped region satisfies 0 " w(t) " D for all t and w(t) asymptotically approaches D(0) when
η = +1(−1). For p > 1, we numerically solve equation (15) with Kirchoff’s voltage law
applied to an ideal ML circuit

L
di

dt
+ M(q(t))i(t) = v(t), (17)

using the following simple algorithm:

wj+1 = wj + η
µDRON

D
F

(wj

D

)
ij , εt (18)

ij+1 = ij +
εt

L
[vj − M(wj+1)ij ], (19)

qj+1 = qj + ij+1εt . (20)

Here, εt is the discrete time step and wj, ij and qj stand for the doped-region width, current
and charge at time tj = jεt , respectively. The algorithm is stable and accurate for small
εt " 10−2t0.

Figure 6 compares the theoretical i–v results for a single memristor with two models for
the dopant drift: a p = 1 model with non-uniform drift over the entire memristor (red solid)
and a p = 10 model in which the dopant drift is heavily suppressed only near the boundaries
(green dashed). We see that as p increases, beyond a critical voltage the memristance drops
rapidly to RON as the entire memristor is doped. Figure 7 shows theoretical results for a
discharging ideal MC circuit obtained using two models: one with p = 1 (green dashed for
η = +1 and blue dash-dotted for η = −1) and the other with p = 10 (red solid for η = +1
and magenta dotted for η = −1). The corresponding window functions Fp(x) are shown in
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Figure 6. Theoretical i–v curves for a memristor with (realistic) dopant drift modelled by window
functions Fp(x) = 1 − (2x − 1)2p with p = 1 (red solid) and p = 10 (green dashed), in the
presence of an external voltage v(t) = 2v0 sin(ω0t/2). The memristor parameters are w0/D = 0.5
and ROFF/RON = 50. We see that the memristive behaviour is enhanced at p = 10. The slope of
the i–v curves at small times is the same, R−1

0 , in both cases whereas the slope on return sweep
depends on the window function. For large p, the return-sweep slope is R−1

ON = 1 % R−1
0 and it

corresponds to a fully doped memristor.
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Figure 7. Theoretical q–t curves for an ideal MC circuit with nonlinear dopant drift modelled by
window functions Fp(x) with p = 1 and p = 10 shown in the inset. The green dashed (η = +1)
and the blue dash-dotted (η = −1) correspond to the p = 1 window function. The red solid
(η = +1) and the magenta dotted (η = −1) correspond to the p = 10 window function. The
horizontal line at q/Q0 = 0.1 is a guide to the eye. The memristor parameters are w0/D = 0.5
and ROFF/RON = 20. The initial charge on the capacitor is q0/Q0 = 0.7 and C/C0 = 1. We see
that the memristive effect is enhanced for large p when η = +1. Hence, for large p the two decay
time scales associated with η = +1 (red solid) and η = −1 (magenta dotted) can differ by a factor
of R0/RON % 1. Fitting the experimental data to these results can determine the nature of dopant
drift in actual samples.

the inset. We observe that the memristive behaviour is enhanced as p increases, leading to a
dramatic difference between the decay times of a single MC circuit when η = +1 (red solid)
and η = −1 (magenta dotted). Figure 7 also shows that fitting the experimental data to these
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Figure 8. Theoretical q–t curves for an ideal discharging MCL circuit modelled using the window
function for p = 50. The circuit parameters are w0/D = 0.5,ROFF/RON = 20, L/L0 = 1,
C/C0 = 0.04 and q0/Q0 = 2. The initial resistance R0 = 10.5 implies that the corresponding
ideal RCL circuit, with ωLC = 1/

√
LC ∼ R0/2L, is close to critically damped. When η = +1

(red solid), we see that the MCL circuit is underdamped, whereas when η = −1 (green dashed) it
is overdamped. Result for the RCL circuit with the same initial resistance R0 is shown by the blue
dotted line. Thus, a single MCL circuit can be driven from overdamped to underdamped behaviour
by simply exchanging the ± plates on the capacitor.

theoretical results can determine the window function that best captures the realistic dopant
drift for a given sample.

The properties of ideal MC and ML circuits with an arbitrary voltage are obtained by
integrating equations (15) and (17) using the algorithm described above. However, as the
discussion in section 1 shows, these circuits significantly differ from their ideal RC and RL
counterparts only at low frequencies.

5. Oscillations and damping in an MCL circuit

In this section, we discuss the last remaining elementary circuit, namely an ideal MCL circuit.
First, let us recall the results for an ideal RCL circuit [1]. For a circuit with no voltage source
and an initial charge q0, the time-dependent charge on the capacitor is given by

q(t) =
{
q0 e−t/2τRL cos(ω̃t) ω̃2 > 0
q0 e−t/2τRL cosh(|ω̃|t) ω̃2 < 0,

(21)

where ω̃2 = ω2
LC − (2τRL)−2 > 0 defines an underdamped circuit and ω̃2 < 0 defines an

overdamped circuit. The two results are continuous at ω̃ = 0 (critically damped circuit).
Thus, an RCL circuit is tuned through the critical damping when the resistance in the circuit
is increased beyond Rc = 2

√
L/C.

The nonlinear differential equation describing an MCL circuit is obtained by adding the
capacitor term to equation (17),

L
di

dt
+ M(q(t))i(t) +

q(t)

C
= v(t). (22)

Due to the q-dependent memristance, equation (22) is not analytically solvable; we use the
numerical algorithm mentioned earlier to obtain the solution. Figure 8 shows theoretical q–t
curves for a single MCL circuit obtained by numerically integrating equations (15) and (17)
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Figure 9. Theoretical q–t curves for an ideal MCL circuit driven by an ac voltage v(t) = v0 sin(ω0t)
with η = +1. The circuit parameters w0/D = 0.5,ROFF/RON = 10, L/L0 = 50 are fixed. The
capacitance is C/C0 = 2 (red solid), C/C0 = 0.02 (green dashed) and C/C0 = 0.01 (blue dotted).
We see that for ωLC < ω0, the amplitude of the transient effects is comparable to the maximum
amplitude that occurs at resonance, and that the memristive effect disappears in the steady-state
solution.

using the p = 50 window function. When η = +1 (red solid), the circuit is underdamped
because as the capacitor discharges the memristance reduces from its initial value R0. When
η = −1 (dashed green), the discharging capacitor increases the memristance. Therefore,
when η = −1 the MCL circuit is overdamped. For comparison, the blue dotted line shows the
theoretical q–t result for an ideal RCL circuit with resistance R0 that is chosen such that
the circuit is close to critically damped, R0 ∼ 2

√
L/C. Figure 8 implies that if we exchange

the ± plates of the capacitor in an MCL circuit, the charge will decay rapidly or oscillate. This
property is unique to an MCL circuit and arises essentially due to the memristive effects.

For the sake of completeness, we briefly discuss the behaviour of an MCL circuit driven
by an ac voltage source v(t) = v0 sin(ωt), with zero initial charge on the capacitor. For
an ideal RCL circuit, the steady-state charge q(t) oscillates with the driving frequency ω

and amplitude v0/L

√(
ω2 − ω2

LC

)2 + (ω/τRL)2. For a given circuit, the maximum amplitude

v0
√

LC/R occurs at resonance, ω = ωLC , and diverges as R → 0 [1]. Figure 9 shows
theoretical q–t curves for an ideal MCL circuit with η = +1 driven with v(t) = v0 sin(ω0t).
The red solid line corresponds to low LC frequency ωLC = 0.1ω0, the dashed green line
corresponds to resonance, ω0 = ωLC , and the dotted blue line corresponds to high LC
frequency ωLC =

√
2ω0. We find that irrespective of the memristor polarity, the memristive

effects are manifest only in the transient region. We leave it as an exercise for the reader
to explore the strong transient response for ωLC < ω and compare it with the steady-state
response at resonance ωLC = ω.

6. Discussion

In this tutorial, we have presented the theoretical properties of the fourth ideal circuit element,
the memristor, and of basic circuits that include a memristor. In keeping with the revered
tradition in physics, the existence of an ideal memristor was predicted in 1971 [3] based purely
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on symmetry arguments4; however, its experimental discovery [6–9] and the accompanying
elegant physical picture [9, 11] took another 37 years. The circuits we discussed complement
the standard RC, RL, LC, RCL circuits, thus covering all possible circuits that can be formed
using the four ideal elements (a memristor, a resistor, a capacitor and an inductor) and a voltage
source. We have shown in this tutorial that many phenomena—the change in the discharge
rate of a capacitor when the ± plates are switched or the change in the current in a circuit
when the battery terminals are swapped—are attributable to a memristive component in the
circuit. In such cases, a real-world circuit can only be mapped onto one of the ideal circuits
with memristors.

The primary property of the memristor is the memory of the charge that has passed through
it, reflected in its effective resistance M(q). Although the microscopic mechanisms for this
memory can be different [9, 11], dimensional analysis implies that the memristor size D and
mobility µD provide a unit of magnetic flux D2/µD that characterizes the memristor. Although
the underlying idea behind a memristor is straightforward, its nanoscale size remains the main
challenge in creating and experimentally investigating basic electrical circuits discussed in
this paper.

We conclude this tutorial by mentioning an alternate possibility. It is well known that an
RCL circuit is equivalent [1] to a one-dimensional mass + spring system in which the position
y(t) of the point mass is equivalent to the charge q(t), the mass is L, the spring constant is 1/C

and the viscous drag force is given by F(v) = −γ v where γ = R. Therefore, a memristor is
equivalent to a viscous force with a y-dependent drag coefficient, FM = −γ (y)v. Choosing
γ (y) = γ0 − %γy/A, where A is the typical stretch of the spring, will create the equivalent
of an MCL circuit. Since a viscous force naturally occurs in fluids, a vertical mass + spring
system in which the mass moves inside a fluid with a large vertical viscosity gradient can
provide a macroscopic realization of the MCL circuit.
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