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Abstract
We examine a generalization of the one-dimensional Ising model involving
interactions among neighbourhoods of k adjacent spins. The model is solved
by exploiting a connection to an interesting computational problem that we call
‘k-SAT on a ring’, and is shown to be equivalent to the nearest-neighbour Ising
model in the absence of an external magnetic field. The aim of this paper is to
explore an interplay of ideas in the context of a toy problem, while introducing
a way of thinking about exactly solvable models in terms of ‘computational
analogues’.

1. Introduction

Statistical mechanics often employs idealized models to understand complex systems, with
the goal of predicting macroscopic properties from simplified descriptions of microscopic
interactions. Due to the many degrees of freedom involved and the relative scarcity of exactly
solvable models, numerical simulations are indispensable tools for gaining insight into such
systems [1–3]. In turn, physical reasoning has motivated computational techniques from
simulated annealing to probabilistic schemes in coding theory [4], as well as the study of the
Ising model from a theoretical computer science perspective [5].

Here, we suggest inverting the relationship between statistical mechanics and computation
to arrive at analytical solutions to exactly solvable models. The process goes roughly like
this: (1) find a correspondence between the Hamiltonian of the model and the parameters of
some computational problem, (2) construct an algorithm to solve the problem and (3) deduce
the partition function from properties of the algorithm or the solutions. To illustrate this rather
unorthodox approach, we consider a generalized ‘k-spin Ising model’ as a case study that
hopefully elucidates what we mean by computational reasoning as applied to exactly solvable
models in statistical mechanics. The ideas proposed here, due to their departure from standard
methods, may be instructive to both students and general (physics) audiences.
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In the discussion to follow, we will always work in the canonical ensemble. Assuming
discrete energy levels, which is the case for the finite lattices that we will consider, the
probability pi that a system will occupy the microstate i with the energy Ei is given by the
Boltzmann distribution:

pi = e−βEi

Z
, Z =

∑

i

e−βEi , (1)

where Z is the partition function and β = 1/kBT is the inverse temperature. When dealing with
n spins on a lattice, we will write Zn to make the system size explicit. Most thermodynamic
variables of interest (Helmholtz free energy, heat capacity, mean pressure, entropy, etc), in
addition to other observables such as magnetization and magnetic susceptibility, are derivable
directly from the partition function. Thus, the partition function encapsulates the description
of a system in thermal equilibrium, and we say that a statistical–mechanical model of such
a system is ‘exactly solvable’ if the associated partition function can be evaluated in closed
form.

2. The 1D Ising model

To introduce the main example of this paper, we briefly review the solution of the nearest-
neighbour Ising model in one dimension. It is the archetype of an exactly solvable model of
ferromagnetism, and incorporates the key ingredients of the transfer matrix formalism.

Assuming periodic boundary conditions, the setup consists of n spins on a circle. Let
σi = ±1 denote the spin at site i, and let σ = (σ1, . . . , σn) denote a configuration of spins.
We use h to denote the external field strength times the dipole moment per spin. The classical
Ising Hamiltonian is then

H(σ ) = −J

n∑

i=1

σiσi+1 − h

n∑

i=1

σi .

The spin–spin coupling is ferromagnetic if J > 0, which encourages mutual alignment to
minimize the energy.

The observation that leads to an exact solution is that the partition function can be written
as a sum of terms whose factors involve only adjacent spins:

Zn =
∑

σ

exp

(

βJ

n∑

i=1

σiσi+1 + βh

n∑

i=1

σi

)

=
∑

σ

V (σ1, σ2)V (σ2, σ3) · · · V (σn, σ1),

where

V (σi , σi+1) = exp
[
βJσiσi+1 +

βh

2
(σi + σi+1)

]
.

Upon defining the symmetric transfer matrix

V =
(

V (+, +) V (+,−)

V (−, +) V (−,−)

)
=

(
eβ(J+h) e−βJ

e−βJ eβ(J+h)

)
, (2)

the expression for the partition function can be interpreted as a sequence of matrix
multiplications:

Zn =
∑

σ

Vσ1,σ2 Vσ2,σ3 · · · Vσn,σ1 =
∑

σ1

[Vn]σ1,σ1 = tr Vn.

Diagonalizing V gives the eigenvalues

#± = eβJ coshβh ±
√

e2βJ sinh2 βh + e−2βJ ,
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where |#+| > |#−|, whence Zn = #n
+ + #n

− ∼ #n
+ as n → ∞. In particular, for h = 0, we

find that

Zn = λn
+ + λn

− ∼ λn
+, where λ± = eβJ ± e−βJ . (3)

The free energy per site is found to be f (h, T ) = −β−1 ln#+, from which it follows that the
magnetization is

M(h, T ) = −∂f (h, T )

∂h
= eβJ sinhβh(e2βJ sinh2 βh + e−2βJ )−1/2.

This is an analytic function of h for all finite β, so the model admits no phase transition at any
positive temperature. It undergoes a paramagnetic-to-ferromagnetic phase transition only at
T = 0 (β = ∞), in which case the spontaneous magnetization is |M| = 1.

The Ising model lends itself to many generalizations, whether to higher dimensions,
different lattices or modified interactions. Well-studied variations of this model abound even
in one dimension [6–11], but models involving products over arbitrary numbers of spins are
uncommon (examples of the latter type have been considered in the context of protein folding,
where binary variables represent whether contact sites on the protein are open or closed
[12, 13]). Here, we study a particularly natural generalization of this sort, which consists of
replacing nearest-neighbour coupling with k-neighbourhood coupling, such that the subsets
of coupled spins correspond to a sort of k-mer coverage of the spin chain. Putting realism
aside, the most interesting aspect of this k-spin model is that while it is so similar in principle
to the nearest-neighbour model, similar techniques do not suffice to solve it. Our approach
to computing the partition function of this model counts solutions to a related problem and
is hence more conceptually similar to the combinatorial approach of Kac and Ward to the
two-dimensional Ising model [14] than to conventional algebraic methods, albeit in a much
simpler context.

3. The k-spin Ising model

We propose the following generalization of the nearest-neighbour Ising model: consider a
chain of spins, with periodic boundary conditions, in which neighbourhoods of k adjacent
spins interact. Suppose that the interaction energy of each neighbourhood depends on the
parity of the number of ‘down’ spins. Thus, the Hamiltonian takes the form

H(σ ) = −
n∑

i=1

Jiσiσi+1 · · · σi+k−1 − h

n∑

i=1

σi , (4)

where σi+n ≡ σi . We assume throughout our discussion that k is even, as this ensures time-
reversal symmetry, i.e. invariance of the Hamiltonian under negation of all spins in the absence
of an external magnetic field. We show that this model is equivalent to the nearest-neighbour
Ising model in zero field by demonstrating the equality of their partition functions when
h = 0, in the thermodynamic limit n → ∞.

The interesting aspect of the present problem is the approach taken here to estimate the
partition function, which looks nothing like the standard techniques of classical statistical
mechanics. In particular, the k-spin model is not amenable to a straightforward transfer matrix
analysis because when k > 2, it does not consist of a sequence of purely adjacently interacting
subsystems. However, mapping this model onto a simple computational problem allows us to
infer a great deal of information about its structure.
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To this end, we introduce the problem of ‘k-SAT on a ring’. The nomenclature comes from
that of the Boolean satisfiability problem, which asks for an assignment of binary variables
xi ∈ {0, 1} such that the Boolean formula

f (x1, x2, . . . , xn) = C1 ∧ C2 ∧ · · · ∧ CN (5)

evaluates to 1. Here, the Ci are clauses (or sub-formulae) that each express a condition on
some subset of the bits {xi}, while ‘∧’ denotes the logical conjunction operator, meaning that
the formula f is satisfied only when all the clauses are themselves satisfied. An instance of
k-SAT on a ring consists of n clauses over n bits, so that N = n in formula (5), where the clause
Ci is associated with the k adjacent bits xi, xi+1, . . . , xi+k−1. The first and last bits x1 and xn
are considered adjacent, hence the ‘ring’. The clause Ci is itself described by a bit ai ∈ {0, 1}
and designated as either ‘even’ (ai = 0) or ‘odd’ (ai = 1). We say that Ci is satisfied if the
Hamming weight, or the number of ones, of the bit string xixi+1 · · · xi+k−1 has parity ai. For
example, the instance of 4-SAT on a ring over 6 bits with clauses (ai)

6
i=1 = (1, 0, 1, 0, 0, 0)

admits the solutions 001011, 011110, 100001, 110100. One sees that the bitwise complement
of any solution also corresponds to a solution, as the Hamming weight of a bit string of length
k is invariant under negation of all bits.

Solubility of a given instance of k-SAT on a ring requires that the number of odd clauses
be even. Indeed, for a variable bit string x1 · · · xn, the problem reduces to the system of
congruences xi + · · · + xi+k−1 ≡ ai (mod 2) for i = 1, . . . , n, taken cyclically. Adding gives∑

i ai ≡ k
∑

i xi ≡ 0 (mod 2), which implies that the number of odd clauses (odd ai) must
also be even. However, a given instance of k-SAT on a ring over n bits need not have any
solutions even if this condition is met.

Note that when h = 0, one could map a given instance of k-SAT on a ring onto the
Hamiltonian (4) by choosing Ji = (−1)ai J . Solutions to the k-SAT problem would then
correspond to spin configurations with the ground-state energy, if we identify the spin +1 with
the bit 0 and the spin −1 with the bit 1. However, we need not stretch the analogy this far: for
simplicity, we consider only ferromagnetic and site-independent interactions with Ji = J > 0.
The corresponding (h = 0) partition function is

Zn =
∑

σ

exp

(

βJ

n∑

i=1

σiσi+1 · · · σi+k−1

)

.

It turns out that the correspondence between k-SAT on a ring and the k-spin Ising model allows
us to compute this sum over states, as we demonstrate next.

4. Zero-field partition function

Every n-bit instance of k-SAT on a ring can be represented as an n-tuple α = (a1, . . . , an) that
specifies the parity of each clause. Hence α ∈ {0, 1}n, in contrast to the spin configuration
σ = (σ1, . . . , σn), which takes values in {+1,−1}n. Let w(α) denote the Hamming weight
of a ‘clause configuration’ α, so that α encodes the conditions in a problem instance with
n − w(α) even clauses and w(α) odd clauses. Then, the partition function in zero field can be
written as

Zn =
∑

α

N(α) exp [βJ (n − 2w(α))] , (6)

where N(α) denotes the number of solutions to the problem instance represented by α. Here,
we have made the obvious identification of solutions with spin configurations.
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We immediately observe several facts regarding the function N(α). First, the ‘average’
value of N(α) is 1. Indeed, each of the 2n bit strings of length n gives rise to exactly one
solution to an instance of k-SAT on a ring, so that

∑

α

N(α) = 2n. (7)

Second, N(α) takes only two possible values, 0 or a power of 2, and depends on α only insofar
as which value it takes. This is because N(α) counts the number of solutions to a system of
linear equations over the finite field Z/2Z, as mentioned in the previous section. This linear
system can be written in the form Mx = α where M is a circulant matrix and α is a column
vector whose entries are those of the n-tuple α. The rank r of the matrix M depends only on k
and n—hence the number of solutions to the linear system is 2n−r if a particular solution x to
the equation Mx = α exists and 0 otherwise. Third, we have that

N(α) ! 2gcd(k,n), (8)

where gcd(a, b) denotes the greatest common divisor of the integers a and b. To see this,
consider the following algorithm for solving an instance of k-SAT on a ring over n bits.
Assigning an arbitrary value to one of the n bits in an attempt to guess a solution uniquely
determines n/ gcd(k, n) of the bits in a manner consistent with the given clauses. For example,
choose a value for bit 1. From the first clause, the Hamming weight of bits 2 through k is
determined. From the second clause and the Hamming weight of bits 2 through k, the value of
bit k + 1 is determined. Continue in this manner to determine bits 2k + 1, 3k + 1, etc. Clearly,
assigning arbitrary values to the first gcd(k, n) undetermined bits will determine the values of
all n bits. To exhaustively determine all solutions to an instance of k-SAT on a ring using this
method will require gcd(k, n) passes for each of the 2gcd(k,n) possible choices for the first few
bits. Because there are 2gcd(k,n) choices for these first gcd(k, n) undetermined bits, there exist
at most 2gcd(k,n) solutions to an instance of k-SAT on a ring over n bits. By considering simple
examples (such as that of the previous section), one can show that this bound is tight and that
equality is not always attained.

The last of these observations yields a trivial upper bound on the partition function: we
have from (6) that

Zn ! 2gcd(k,n)eβJn
∑

α

e−2βJw(α) ! 2keβJn

n∑

w=0

(
n

w

)
e−2βJw = 2keβJn(1 + e−2βJ )n = 2kλn

+,

with λ+ defined in (3). In the thermodynamic limit, this upper bound equals the standard Ising
partition function up to a factor independent of n.

We can say more, however. Assuming the existence of the thermodynamic limit

lim
n→∞

n−1 ln Zn,

which is proportional to the free energy per site, the partition function must approach an
analytic—in fact, exponential—function of n as n → ∞. This is a purely physical requirement,
and expresses the fact that the free energy of a large system should scale proportionally with
its size [1]. Thus, the partition function should not depend on the coarse number-theoretic
properties of n, asymptotically, and we may assume for convenience that gcd(k, n) = 1.
Physically, one can imagine building up the system of n spins by adding spins in blocks of
k, starting with a single spin: the resulting values of n, namely 1, k + 1, 2k + 1, and so
on, are all coprime to k. The manner in which we construct the system is irrelevant when
taking the thermodynamic limit, which justifies the assumption that gcd(k, n) = 1. Under
this assumption, N(α) = 2 if w(α) is even and N(α) = 0 otherwise. This is because there
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are 2n−1 tuples α such that w(α) is even and an equal number such that w(α) is odd, and we
observed in the previous section that N(α) = 0 if w(α) is odd. Therefore, it follows from (7)
and (8) that N(α) = 2n/2n−1 = 2 if w(α) is even. This observation allows us to extract the
exponential dependence of the partition function:

Zn =
∑

w(α) even

2eβJ (n−2w(α)) = 2eβJn
∑

w even

(
n

w

)
e−2βJw = eβJn

n∑

w=0

(
n

w

)
[1 + (−1)w]e−2βJw

= eβJn(1 + e−2βJ )n + eβJn(1 − e−2βJ )n = λn
+ + λn

− ∼ λn
+.

This partition function exactly matches that of the nearest-neighbour Ising model in zero field
(3), as we wished to show.

As a final observation, it is interesting to note the similarity between this system and one
in which only spins separated by some number of sites interact. Indeed, any ‘separated’
interaction of fixed range is also equivalent to the nearest-neighbour interaction in the
thermodynamic limit. To show this, let ' be a positive integer, and consider an Ising-like
spin system with Hamiltonian

H(σ ) = −J

n∑

i=1

σiσi+'.

Define the transfer matrix T obtained by substituting h = 0 into expression (2) for V:

T =
(

T++ T+−
T−+ T−−

)
=

(
eβJ e−βJ

e−βJ eβJ

)
.

Effecting the matrix multiplications gives

Zn =
∑

σ

n∏

i=1

Tσi ,σ'+i
=

∑

σ

gcd(',n)∏

i=1

Tσi ,σ'+i
Tσ'+i ,σ2'+i

Tσ2'+i ,σ3'+i
· · · Tσn−'+i ,σi

=
∑

σ1

∑

σ2

· · ·
∑

σgcd(',n)

gcd(',n)∏

i=1

[
Tn/ gcd(',n)

]
σi ,σi

=
[
tr

(
Tn/ gcd(',n)

)]gcd(',n)
.

The thermodynamic limit is well defined because

Zn =
[
λ

n/ gcd(',n)
+ + λ

n/ gcd(',n)
−

]gcd(',n)
, (9)

and since gcd(', n) = O(1), the term λ
n/ gcd(',n)
+ dominates as n → ∞, whence Zn ∼ λn

+.
Letting ' = k/2 in formula (9) gives a surprisingly good numerical approximation to the
partition function of the k-spin Ising model. It is an even better approximation than the
nearest-neighbour Ising partition function, which makes sense because the k-spin Ising model
can be viewed as a ‘smeared-out’ version of the model in which sites i and i + k/2 interact
(see table 1).

5. Discussion

We have introduced a method of solving the k-spin Ising model in zero field by mapping
its Hamiltonian onto a computational problem. The method may be applicable to other
models for computing partition functions and correlation functions, or simply for didactic
purposes. Given the increasing interconnectedness of statistical physics and computation, it
seems fruitful to explore ways of thinking about exactly solvable models from a fundamentally
algorithmic point of view.
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Table 1. Comparison of the nearest-neighbour (‘N–N’) and (k/2)th-neighbour (‘k/2-N’) Ising
models with the k-spin model for k = 4, . . . , 30. The entries of the middle (right) column are the
numbers d such that the nearest-neighbour ((k/2)th-neighbour) partition function disagrees with
the k-spin partition function whenever n is a multiple of d. Values were determined numerically
for n up to 30 and then extrapolated. As can be seen, the (k/2)th-neighbour partition function
consistently matches the k-spin partition function more often than does the nearest-neighbour
partition function. Interesting numerical patterns emerge, which suggest that the exact k-spin
partition function depends on both the number of distinct primes dividing k and their multiplicities;
a full analysis is beyond the scope of this paper.

k N–N k/2-N

4 2 4
6 3 6
8 2 8
10 5 10
12 2, 3 4
14 7 14
16 2 16
18 3 6
20 2, 5 4
22 11 22
24 2, 3 8
26 13 26
28 2, 7 4
30 3, 5 6, 10

The k-spin Ising model further illustrates that replacing nearest-neighbour interactions
with similar short-range interactions may hardly have any effect in the thermodynamic limit. In
this way, slightly different small-scale assumptions reproduce the same large-scale properties.
We have yet to study the h > 0 case of the k-spin Ising model, but numerical calculations for
small n indicate that the free energy function does differ from that of the nearest-neighbour
Ising model in an external field.

We conclude with a note on the motivation behind the model considered in this paper.
The k-spin Ising model, in the guise of k-SAT on a ring, arises as a generalization of the
problem of ‘2-SAT on a ring’, which appears as a pedagogical example in the very first
paper on adiabatic quantum computation [17]. In this paper, Farhi et al encode the 2-SAT
problem in a (quantum) Hamiltonian HP and verify it to be solvable in polynomial time on
an adiabatic quantum computer. Incidentally, their techniques can be extended to show that
k-SAT on a ring is solvable in polynomial time on an adiabatic quantum computer (it is trivially
solvable in polynomial time on a classical computer). The proof of this fact provides further
justification for why k must be even: a crucial step relies on restricting analysis to an invariant
subspace of a judiciously chosen unitary operator whose existence assumes the time-reversal
(or bit-negation) symmetry of HP, which in turn exists only when k is even.
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