Dyck path triangulations of products of simplices and extendability

Camilo Sarmiento
(j.w.w. C. Ceballos and A. Padrol)

Otto-von-Guericke-Universität Magdeburg

Discrete Mathematics/Geometry Seminar
TU Berlin
October 29th, 2014
Outline of the talk

Triangulations of products of simplices

Dyck path triangulations and some relatives

Extendability of partial triangulations
Outline of the talk

Triangulations of products of simplices

- Dyck path triangulations and some relatives

- Extendability of partial triangulations
Products of simplices

The cartesian product of two standard simplices is the polytope

\[\Delta_{d-1} \times \Delta_{n-1} := \text{conv} \left\{ (e_i, \bar{e}_j) : e_i \in \mathbb{R}^d, \bar{e}_j \in \mathbb{R}^n \right\} \subset \mathbb{R}^{d+n} \]

with \(d \cdot n \) vertices and of dimension \(d + n - 2 \).

For instance:
Triangulations of $\Delta_{d-1} \times \Delta_{n-1}$

A triangulation of $\Delta_{d-1} \times \Delta_{n-1}$ is a subdivision of $\Delta_{d-1} \times \Delta_{n-1}$ into subsimplices

(subsimplex = simplex spanned by vertices of $\Delta_{d-1} \times \Delta_{n-1}$)

- that cover $\Delta_{d-1} \times \Delta_{n-1}$ and
- whose relative interiors don’t intersect.

For instance:
Triangulations of $\Delta_{d-1} \times \Delta_{n-1}$ elsewhere

Triangulations and coarser polyhedral subdivisions of $\Delta_{d-1} \times \Delta_{n-1}$ are interesting:

- **[Babson-Billera '98]**

 \[
 \begin{aligned}
 \text{coarse regular subdivisions of } & \Delta_{d-1} \times \Delta_{n-1} \\
 \leftrightarrow & \text{facets of Newton polytope of product of all minors of generic } d \times n \text{ matrix}
 \end{aligned}
 \]

- **[Sturmfels-Develin '04, Ardila-Develin '09 et al.]**

 \[
 \begin{aligned}
 \text{triangulations of } & \Delta_{d-1} \times \Delta_{n-1} \\
 \leftrightarrow & \text{generic arrangements of } d \text{ tropical hyperplanes in } \mathbb{T}P^{n-1}
 \end{aligned}
 \]

- **[Kapranov '92, Speyer '08, Herrmann-Joswig-Speyer '12]**

 \[
 \begin{aligned}
 \text{subdivisions of } & \Delta_{d-1} \times \Delta_{n-1} \\
 \leftrightarrow & \text{matroid polytope subdivisions of } d \text{-th hypersimplices of order } (n + d) \text{ at vertex figures}
 \end{aligned}
 \]

- **[Ardila-Billey '07, Ardila-Ceballos '11]**

 \[
 \begin{aligned}
 \text{triangulations of } & \Delta_{d-1} \times \Delta_{n-1} \\
 \leftrightarrow & \text{matroid of lines in generic arrangement of } n \text{ complete flags in } \mathbb{C}^d
 \end{aligned}
 \]
Some known properties of triangulations of $\Delta_{d-1} \times \Delta_{n-1}$

- All full-dimensional simplices of $\Delta_{d-1} \times \Delta_{n-1}$ have the same volume \Rightarrow all triangulations of $\Delta_{d-1} \times \Delta_{n-1}$ have the same number of full-d’ simplices (namely $\binom{d+n-2}{d-1}$) [Folk-lore?].
- The secondary polytope of $\Delta_{d-1} \times \Delta_1$ is affinely isomorphic to $(d-1)$-permutahedron [Gelfand-Kapranov-Zelevinsky ’91].
- Arbitrarily large numbers are required to have an integral normal vector for certain facets of the secondary polytope of $\Delta_{d-1} \times \Delta_{n-1}$ [Babson-Billera ’98].
- The graphs of triangulations of $\Delta_{d-1} \times \Delta_1$ and of $\Delta_{d-1} \times \Delta_2$ are connected under flips [Santos ’04].
Triangulations of $\Delta_{d-1} \times \Delta_{n-1}$

Grid representation

Vertices of $\Delta_{d-1} \times \Delta_{n-1}$ can be represented in a $d \times n$ rectangular grid:

A (sub)simplex of $\Delta_{d-1} \times \Delta_{n-1}$ is a subset of the grid:

So a triangulation of $\Delta_{d-1} \times \Delta_{n-1}$ can look like:
Grid representation

- Consider a staircase in a $d \times n$ grid.
- The corresponding vertices of $\Delta_{d-1} \times \Delta_{n-1}$ span a $(n + d - 2)$-simplex.

- The $\left(\binom{d+n-2}{d-1}\right)$ simplices obtained from all staircases cover $\Delta_{d-1} \times \Delta_{n-1}$ and their interiors don’t intersect:

- They form the staircase triangulation of $\Delta_{d-1} \times \Delta_{n-1}$.
Mixed subdivision representation

(Some) simplices of $\Delta_{d-1} \times \Delta_{n-1}$ can be represented as Minkowski sums inside a dilated simplex $d\Delta_{n-1} = \Delta_{n-1} + \ldots + \Delta_{n-1}$:

$$d \times \Delta_{n-1}$$

Theorem (Sturmfels ’94, Huber-Rambau-Santos ’00)

\[
\begin{align*}
\{ \text{triangulations of } \Delta_{d-1} \times \Delta_{n-1} \} & \quad \overset{\text{Cayley trick}}{\longleftrightarrow} \quad \{ \text{fine mixed subdivisions of } d\Delta_{n-1} \} \\
\end{align*}
\]
Mixed subdivision representation

Theorem (Develin-Sturmfels '04, Santos '04, Ardila-Develin '09, Oh-Yoo '12, Horn '12)

\[\{ \text{fine mixed subdivisions of } d \Delta_{n-1} \} \leftrightarrow \{ \text{generic arrangements of } d \text{ tropical hyperplanes in } \mathbb{TP}^{n-1} \} \]

For the staircase triangulation, for instance:
Outline of the talk

Triangulations of products of simplices

Dyck path triangulations and some relatives

Extendability of partial triangulations
Dyck path triangulation of $\Delta_{n-1} \times \Delta_{n-1}$

Consider the Dyck paths in an $n \times n$ grid

with their orbits under $(i, j) \mapsto (i + 1 \mod n, j + 1 \mod n)$

Theorem (Ceballos-Padrol-S ’13)

The resulting $n \cdot \frac{1}{n} \binom{2(n-1)}{n-1}$ form a regular triangulation of $\Delta_{n-1} \times \Delta_{n-1}$: the Dyck path triangulation.
Dyck path triangulations and some relatives

Dyck path triangulation of $\Delta_{n-1} \times \Delta_{n-1}$

Mixed subdivision representation:

$\text{Mixed subdivision representation:}$

$\Delta_2 \times \Delta_2$

$4\Delta_3$

$\Delta_3 \times \Delta_3$
Some relatives

Theorem (Ceballos-Padrol-S ’13)
The following are all (regular) triangulations.

Flipped Dyck path triangulation:

Extended Dyck path triangulation:

“Rational” Dyck path triangulation
Outline of the talk

Triangulations of products of simplices

Dyck path triangulations and some relatives

Extendability of partial triangulations
Partial triangulations of $\Delta_{d-1} \times \Delta_{n-1}$

It is an open problem due to Gel’fand, Kapranov and Zelevinsky to find an explicit description of all triangulations of $\Delta_{d-1} \times \Delta_{n-1}$. [Sturmfels ’91]

Our approach: are there $d, n, k \in \mathbb{N}^+$ conditions s.t. every triangulation of $\text{ske}_{k-1}(\Delta_{d-1}) \times \Delta_{n-1}$ is the restriction of a triangulation of $\Delta_{d-1} \times \Delta_{n-1}$?

![Diagram](image.png)

- Extends
- Doesn't extend!
Partial triangulations of $\Delta_{d-1} \times \Delta_{n-1}$

Our approach: are there $d, n, k \in \mathbb{N}^+$ conditions s.t. every triangulation of

$$\text{skel}_{k-1}(\Delta_{d-1}) \times \Delta_{n-1}$$

is the restriction of a triangulation of $\Delta_{d-1} \times \Delta_{n-1}$?

Motivation and existing results

- $k = 2$, $\min\{d, n\} \leq 3$: one obstruction, complete characterization [Ardila-Ceballos ’11]
- $k = 2$, $\min\{d, n\} > 3$: more obstructions, open [Santos ’11, Ceballos-Padrol-S ’13]
- **Conjecture:** for $k = 2$, general d, n, there are ∞-many obstructions
- $d \geq n > k$: open. **Conjecture:** there are ∞-many obstructions
- $d \geq k \geq n$: solved [Ceballos-Padrol-S ’13]
Extendability result

Theorem (Ceballos-Padrol-S ’13)

Let $d \geq k > n \in \mathbb{N}$. Every triangulation of $\text{ske}_{k-1}(\Delta_{d-1}) \times \Delta_{n-1}$ extends to a unique triangulation of $\Delta_{d-1} \times \Delta_{n-1}$.

Some alternative interpretations

- “as d increases, triangulations of $\Delta_{d-1} \times \Delta_{n-1}$ don’t get much more complicated than triangulations of $\Delta_{n} \times \Delta_{n-1}$”
- “when $d \gg n$, compatibly piecing together triangulations of $\Delta_{n} \times \Delta_{n-1}$ we can always build any triangulation of $\Delta_{d-1} \times \Delta_{n-1}$”
Extendability result “tropically”

Theorem (Ceballos-Padrol-S ‘13)

Let \(d \geq k > n \in \mathbb{N} \). Every triangulation of \(\text{skel}_{k-1}(\Delta_{d-1}) \times \Delta_{n-1} \) extends to a unique triangulation of \(\Delta_{d-1} \times \Delta_{n-1} \).

Tropically, when \(d > n \):

▸ a generic arrangement of \(d \) tropical pseudohyperplanes in \(\mathbb{T}\mathbb{P}^{n-1} \) gives rise to a “compatible collection” of \(\binom{d}{n+1} \) generic subarrangements of \(n+1 \) tropical pseudohyperplanes in \(\mathbb{T}\mathbb{P}^{n-1} \).

▸ conversely, every “compatible” collection of \(\binom{d}{n+1} \) generic subarrangements of \(n+1 \) tropical pseudohyperplanes in \(\mathbb{T}\mathbb{P}^{n-1} \) equals the collection of restrictions of a unique generic arrangement of \(d \) tropical pseudohyperplanes in \(\mathbb{T}\mathbb{P}^{n-1} \)

without adjective “tropical”, this is \[15/18\]
Non-extendability result

Notes

► $k \geq n$ already suffices to guarantee uniqueness
 if a triangulation of $\text{ske}_{k-1}(\Delta_{d-1}) \times \Delta_{n-1}$ extends, then extension is unique

► $k > n$ is necessary for existence, i.e., the bound is optimal

Theorem (Ceballos-Padrol-S ’13)

*For every natural number $n \geq 2$ there is a non-extendable triangulation of $\text{ske}_{n-1}(\Delta_n) \times \Delta_{n-1}$.***
Extended Dyck path triangulation of $\Delta_{n-1} \times \Delta_{n-1}$

Theorem (Ceballos-Padrol-S '13): The resulting triangulation of $\text{skel}_{n-1} \Delta_n \times \Delta_{n-1}$ is non-extendable.
Take away messages

- There is a triangulation of $\Delta_{n-1} \times \Delta_{n-1}$ using Dyck paths and cyclic symmetry.

- If $d \gg n$, any triangulation of $\Delta_{d-1} \times \Delta_{n-1}$ can be “built locally”, by piecing together triangulations of $\Delta_n \times \Delta_{n-1}$.

- For every $n \geq 2$ there are non-extendable triangulations of $\text{skel}_{n-1}(\Delta_n) \times \Delta_{n-1}$.
Thank you!