# gnuplot-file # # s=1/2 Heisenberg model for the square lattice # finite size + periodic boundary conditions (PBC) # see also # http://deposit.ddb.de/cgi-bin/dokserv?idn=967430151 # http://diglib.uni-magdeburg.de/Dissertationen/2003/joeschulenburg.htm # http://www-e.uni-magdeburg.de/jschulen/diss/diss.pdf # #set term dumb (grep -v ps=0 for eps-files) # E = A0 + A3*L^-3 # GAP = D4*L^-2 + D5*L^-3 # N*GAP = D4 + D5*L^-1 # Mag = M0 + M1*L^-1 # gute Uebersicht in PRB45_7229_runge92 # http://www.comp-phys.org:16080/lugano04/Talks/CoupledCluster.pdf # ps=1 # outcommend next line for eps-output ps=0 # set key left set pointsize 1.0 d4=12.1936 a4=d4/4 b4=a4+d4 e0(x)=a0 + a3*x+ a4*x**(4/3.) e1(x)=b0 + b3*x+ b4*x**(4/3.) g(x)= d4 + d5*x g2(x)= d42 + d52*x m(x)= m0 + m1*x m2(x)= m02 + m12*x + m22*x**2 + m23*x**3 fx(x)=x**(-3/2.) # fit Okt2004 36er? a0= -0.667504 # +/- 0.0007583 (0.1136%) a3= -3.18117 # +/- 0.3775 (11.87%) a4= 4.91518 # +/- 1.386 (28.2%) #fit [0:fx(17)] e0(x) "square.dat" i 2 u (fx($1)):($6/$1) via a0,a3,a4 fit [0:fx(29)] e0(x) "square.dat" i 2 u (fx($1)):($6/$1) via a0,a3,a4 b0= -0.668239 # +/- 0.0006648 (0.09948%) b3= -2.15287 # +/- 0.331 (15.37%) b4= 9.9464 # +/- 1.215 (12.22%) #fit [0:fx(17)] e1(x) "square.dat" i 2 u (fx($1)):($7/$1) via b0,b3,b4 fit [0:fx(29)] e1(x) "square.dat" i 2 u (fx($1)):($7/$1) via b0,b3,b4 #fit e0(x) "square.dat" i 1 u (fx($1)):($6/$1):($6/$1-e0(fx($1))) via a0,a3,a4 g31= 0.0145842 # +/- 0.0101 (69.24%) g32= 11.9428 # +/- 0.8022 (6.717%) g33= -12.9514 # +/- 2.674 (20.65%) g3(x)= g31 + g32*x + g33*x**(3./2) #fit [:1./17] g3(x) "square.dat" i 1 u (1./$1):($7-$6) via g31,g32,g33 fx(x)=x**(-1/2.) d42= 12.9348 # +/- 0.04216 (0.3259%) d52= -16.0839 # +/- 0.2139 (1.33%) #fit g2(x) "square.dat" i 2 u (fx($1)):(($7-$6)*$1) via d42,d52 m02= 0.0489373 # +/- 0.006436 (13.15%) m12= 3.22294 # +/- 0.07945 (2.465%) m22= -7.00379 # +/- 0.3175 (4.534%) m23= 6.77145 # +/- 0.4111 (6.071%) #fit m2(x) "square.dat" i 3 u (fx($1)):(($8)**.5) via m02,m12,m22,m23 m0= 0.317271 # +/- 0.001053 (0.332%) m1= 0.851629 # +/- 0.005343 (0.6274%) #fit m(x) "square.dat" i 2 u (fx($1)):(($8)**.5) via m0,m1 # fit taken by betts # i0,1,2,3... = all,squared,highestE,(1,3),... d4 = 14.3135 d5 = -24.3338 #fit g(x) "-" u (fx($1)):(($7-$6)*$1) via d4,d5 fit r0+r1*x "-" u ($1**(-1/2.)):($8**.5) via r0,r1 #32 2 6 0 16 -21.76397307 -21.44913413 0.21926565 #34 1 13 0 34 -23.09745020 -22.79798839 0.21467480 36 3 5 0 12 -24.42883226 -24.143307 0.21071424 # ll=36,37,45 #38 1 7 0 38 -25.7607925 -25.4880015 0.20751801 40 2 6 0 20 -27.09485025 -26.83320 0.20361937 # ??? nicht maxE e if( ps==1 ) set term postscript eps enhanced mono dashed "Helvetica" 20; set out "tmp/sq_erg.eps" set key left bottom set pointsize 1.5 set key 0.0285,-0.67 Right spacing 1.1 fx(x)=x**(-3/2.) # x-trafo fi(x)=x**(-2/3.) # invers trafo yy=-0.648 set label 5 "N:" at fx(56),yy center set label 1 "12" at fx(12),yy center set label 2 "16" at fx(16),yy center set label 3 "24" at fx(24),yy center set label 4 "36" at fx(36),yy center set xlabel "L^{-3}" set ylabel "E/N" # -0.66806-2.4884*x+1.754*x**(4/3.), # "square.dat" i 5 u ($1**(-3/2.)):($6/$1) t "Eodd",\ # x==1/L^3 SWT 3th oder PRB47weihong93 (2.11) # pades-koeff-abschaetzung (serie?) e=-0.6693 esw(x)=-0.6693-(4.06656*.5+0.321151)*x # lin01 ED+QMC elin01(x)=-0.66944-2.272*x+1.64*x**(4./3) # # L=(1,3),(0,l) => J1-J3-chain # L=(2,2),(0,l) => S=1-chain E=a0+a2/L^2 L=N (!) PRB55_2721qin97 # weihong93 (2.6) S=1 chain # es1(L,s=1) =-1.396391525 -2.474925987/L^2 # es1(L,s=1/2+1/2)=-1.396391525/2-2.474925987/L^2 s=1 pi=3.141592654 # Weihong93: 1D-chain SWT E(L) es1(1/0)=-1.39639 => (es1/2)=-0.6982 es1(x)=(-s*s+s*(2/pi-1)-1./4*(2/pi-1)**2 - pi/3*(x**(-2.))*(2*s-2/pi+1) )/2 # es1(fi(x)) Faktoren??? # irgendwie scheint die Potenz der FS-Korrekturen nie zu stimmen ??? # "< echo 0 -0.700742019485" t "Haldane E/2N" w p 1 12, # # plot only N>8, its better looking plot [0:fx(9.8)] [-0.732:-0.644] \ e0(x) t "" w l 1 1,e1(x) t "" w l 1 1,\ "square.dat" i 0 u (fx($1)):($6/$1) t "E_0/N" w p 1 1,\ "square.dat" i 1 u (fx($1)):($6/$1) t "" w p 1 6,\ "square.dat" i 0 u (fx($1)):($7/$1) t "E_1/N" w p 1 2,\ "square.dat" i 1 u (fx($1)):($7/$1) t "" w p 1 6,\ -0.6907 -3.6 *fi(x)**(-2.) t "(1,3),(0,l)" w l 3 3,\ -0.6919 +1.45*fi(x)**(-3/2.) t "" w l 3 3,\ -0.700742-30 *fi(x)**(-3.) t "(2,2),(0,l)" w l 4 4,\ -0.697 +1.65*fi(x)**(-3/2.) t "" w l 4 4,\ elin01(x) t "Lin01" w l 5 5,\ esw(x) t "Weihong93" w l 2 2,\ -0.66960*((x>0.001)?1/0:1) t "CCM extrapolated" w l 7 7,\ 0 t "" # (2,2) exact S=1-chain! scaling? E0/N==E1/N !!!??? #"square.dat" i 5 u ($1**(-3/2.)):($6/$1) t "E0/N" w p 8 8, if( ps==0 ) pause -1 if( ps==1 ) set term postscript eps enhanced mono dashed "Helvetica" 20; set out "tmp/sq_erg2.eps" yy=-0.666 set label 5 "N:" at fx(64),yy center set label 1 "40" at fx(40),yy center set label 2 "36" at fx(36),yy center set label 3 "32" at fx(32),yy center set label 4 "28" at fx(28),yy center set key left bottom Right spacing 1.1 plot [0:fx(23.8)] [-0.685:-0.665] \ e0(x) t "" w l 1 1,e1(x) t "" w l 1 1,\ "square.dat" i 0 u (fx($1)):($6/$1) t "E_0/N" w p 1 1,\ "square.dat" i 1 u (fx($1)):($6/$1) t "" w p 1 6,\ "square.dat" i 0 u (fx($1)):($7/$1) t "E_1/N" w p 1 2,\ "square.dat" i 1 u (fx($1)):($7/$1) t "" w p 1 6,\ -0.6907 -3.6 *fi(x)**(-2.) t "(1,3),(0,l)" w l 3 3,\ -0.6919 +1.45*fi(x)**(-3/2.) t "" w l 3 3,\ -0.700742-30 *fi(x)**(-3.) t "(2,2),(0,l)" w l 4 4,\ -0.697 +1.65*fi(x)**(-3/2.) t "" w l 4 4,\ elin01(x) t "Lin01" w l 5 5,\ esw(x) t "Weihong93" w l 2 2,\ -0.66960*((x>0.001)?1/0:1) t "CCM extrapolated" w l 7 7,\ 0 t "" if( ps==0 ) pause -1 if( ps==1 ) set term postscript eps enhanced mono dashed "Helvetica" 20; set out "tmp/sq_gap2.eps" set key bottom right set pointsize 2 yy=0.16 fx(x)=x**(-1.) set label 5 "N:" at fx(56),yy center set label 1 "40" at fx(40),yy center set label 2 "20" at fx(20),yy center set label 3 "26" at fx(26),yy center set label 4 "36" at fx(36),yy center set xlabel "N^{-1}" set ylabel "{/Symbol D}" set ylabel "E-E_0" set xtics ("0.1" 0.1, "0.05" 0.05, "0.025" 0.025, "0.0125" 0.0125) set ytics ("4" 4, "2" 2, "1" 1, "0.5" 0.5, "0.25" 0.25, "0.125" 0.125) set logscale xy ### fit r0*x**r1 "square.dat" i 1 u (1./$1):($10-$6) via r0,r1 # Singlett-Tripplet-GAP \sim N**-1 5.64(10)*x**0.830(7) q=(pi,pi)- # lowest-Magnon-Gap \sim N**-1/2 7.26(68)*x**0.400(30) q=(x,x)- # Singlett-Singlett-GAP \sim N**-1/4 5.16(6)*x**0.198(4) q=(0,pi)+ N%4 plot [0.11*.15:.37**2] [0.11:4*1.1]\ 5.64*x**0.830 t "", 7.26*x**0.400 t "", 5.16*x**0.198 t "", "square.dat"\ i 1 u (1./$1):($7-$6) t "E_0(S=1)-E_0" w p 1 6,\ "" i 1 u (1./$1):($9-$6) t "E_1(S=1)-E_0" w p 2 7,\ "" i 1 u (1./$1):($10-$6) t "E_1(S=0)-E_0" w p 2 8 if ( ps==0 ) pause -1 set nologscale xy set xtics auto set ytics auto if( ps==1 ) set term postscript eps enhanced mono dashed "Helvetica" 20; set out "tmp/sq_gap1.eps" set key top left set pointsize 2 yy=0.05 fx(x)=1./x set label 5 "N:" at fx(40),yy center set label 1 "10" at fx(10),yy center set label 2 "16" at fx(16),yy center set label 3 "24" at fx(24),yy center set label 4 "36" at fx(36),yy center set xlabel "L^{-2}" set ylabel "{/Symbol D}" plot [0*.15:fx(7.8)] [0:1.1] g2(x**(.5))*x t "", g3(x) t "",\ "square.dat" i 5 u (fx($1)):(2./3*($7-$6)) t "2/3 (E(S=3/2)-E(S=1/2))",\ "square.dat" i 3 u (fx($1)):($7-$6) smooth csplines t "(1,3),(0,l)" w l 3 3,\ "square.dat" i 4 u (fx($1)):($7-$6) smooth csplines t "(2,2),(0,l)" w l 4 4,\ "square.dat" i 0 u (fx($1)):($7-$6) t "{/Symbol D}" w p 1 1,\ "square.dat" i 1 u (fx($1)):($7-$6) t "" w p 1 6 if ( ps==0 ) pause -1 if( ps==1 ) set term postscript eps enhanced mono dashed "Helvetica" 20; set out "tmp/sq_gap.eps" set key right set pointsize 2 yy=7.8 fx(x)=x**(-1/2.) set label 5 "N:" at fx(64),yy center set label 1 "10" at fx(10),yy center set label 2 "16" at fx(16),yy center set label 3 "24" at fx(24),yy center set label 4 "36" at fx(36),yy center # D=j(j+1)/(\chi L^2) mit j=1 set arrow from 0.03,14.404 to 0,14.404 set label "Weihong93" at 0.031,14.2 set xlabel "L^{-1}" set ylabel "N{/Symbol D}" # plot [0*.15:fx(7.8)] [7.5:14.5] g2(x) t "fit 18...36",g(x) t "fit 38...40",\ "square.dat" i 3 u (fx($1)):(($7-$6)*$1) smooth csplines t "(1,3),(0,l)" w l 3 3,\ "square.dat" i 4 u (fx($1)):(($7-$6)*$1) smooth csplines t "(2,2),(0,l)" w l 4 4,\ "square.dat" i 0 u (fx($1)):(($7-$6)*$1) t "" w p 1 1,\ "square.dat" i 1 u (fx($1)):(($7-$6)*$1) t "" w p 1 6 if ( ps==0 ) pause -1 if( ps==1 ) set term postscript eps enhanced mono dashed "Helvetica" 20; set out "tmp/sq_gap3.eps" set key right set pointsize 2 yy=7.8 fx(x)=x**(-1/2.) set label 5 "N:" at fx(64),yy center set label 1 " 9" at fx( 9),yy center set label 2 "15" at fx(15),yy center set label 3 "21" at fx(21),yy center set label 4 "27" at fx(27),yy center set xlabel "L^{-1}" set ylabel "N{/Symbol D}" plot [0*.15:fx(7.8)] [7.1:14.5] \ 14.4-22.2*x t "",\ "square.dat" i 5 u (fx($1)):(2./3*($7-$6)*$1) t "2/3 N {/Symbol D}",\ "0.01)?1/0:1) t "CCM extrapolated" w l 7 7 if ( ps==0 ) pause -1